

Technical Manual

Copyright

Translation of the original instructions, Copyright © 2016 SIEB & MEYER AG

All rights reserved.

This manual or extracts thereof may only be copied with the explicit authorization of SIEB & MEYER AG.

Trademarks

All product, font and company names mentioned in this manual may be trademarks or registered trademarks of their respective companies.

SIEB & MEYER worldwide

For questions regarding our products and technical problems please contact us.

SIEB & MEYER AG Auf dem Schmaarkamp 21 21339 Lüneburg Germany

Phone: +49 4131 203 0 Fax: +49 4131 203 2000 <u>support@sieb-meyer.de</u> http://www.sieb-meyer.de

SIEB & MEYER Asia Co. Ltd. 4 Fl, No. 532, Sec. 1 Min-Sheng N. Road Kwei-Shan Hsiang 333 Tao-Yuan Hsien Taiwan

Phone: +886 3 311 5560 Fax: +886 3 322 1224 <u>smasia@ms42.hinet.net</u> http://www.sieb-meyer.com SIEB & MEYER Shenzhen Trading Co. Ltd. Room 306, 3rd Floor, Building A1, Dongjiaotou Industrial Area, Houhai Dadao, Shekou, Nanshan District, Shenzhen City, 518067 China

Phone: +86 755 2681 1417 / +86 755 2681 2487 Fax: +86 755 2681 2967 <u>sm.china.support@gmail.com</u> <u>http://www.sieb-meyer.cn</u>

SIEB & MEYER USA 3975 Port Union Road Fairfield, OH 45014 USA

Phone: +1 513 563 0860 Fax: +1 513 563 7576 info@sieb-meyerusa.com http://www.sieb-meyer.com

	_	
-	_	

About this Manual	1
Safety Instructions	2
Unit Assembly Complying EMC	3
General Information	4
Type Plate and Device Code	5
Dimensions	6
Mounting	7
Connection	8
Initial Operation	9
Technical Data	10
Connection Examples for AKM-motors	11
Appendix	12
Glossary	13
Index	14

	_

1 1.1 1.2 1.3	About this Manual Illustration of Warnings Technical Symbols Illustration of General Notices	7 7 8 8
2 2.1 2.2 2.3 2.4 2.5 2.6	Safety Instructions9Appropriate Use1Improper Use1Transport1Packaging1Storage1Maintenance / Cleaning1	2 1 1 2 2 2 2
3	Unit Assembly Complying EMC <u>1</u>	<u>5</u>
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9 4.3.10 4.3.10 4.3.11 4.4 4.5 -	General Information 1 Technical Characteristics 1 General Technical Data 1 Default Equipment 1 Types of Construction 1 Shaft End, A-Side 1 Flange 1 IP Code 1 Device Protection 1 Insulation Class 1 Vibration Class 1 Connection 1 Holding Brake 1 Number of Poles 2 Optional Equipment 2 Selection Criteria 2	7778888899999999001
5 5.1 5.2	Type Plate and Device Code 2 Type Plate 2 Device Code 2	<u>3</u> 3
6	Dimensions	<u>5</u>
7	Mounting 2	<u>7</u>
8	Connection	<u>9</u>
9 9.1	Initial Operation	<u>1</u> 2
10 10.1 10.2 10.3	Technical Data 33 AKM1 34 AKM2 34 AKM3 4	<u>3</u> <u>3</u> <u>6</u> 1

10.4	AKM4	<u>44</u>
10.5	AKM5	50
10.6	AKM6	54
10.7	AKM7	59
11	Connection Examples for AKM-motors	<u>65</u>
11.1	Operation of the Terminal Connectors	<u>65</u>
11.1.1	Screw Terminals	<u>65</u>
11.1.2	Push-in Technology	<u>66</u>
11.2	Connector Type E	<u>66</u>
11.2.1	X26A – Resolver (Connector Type E)	<u>66</u>
11.2.2	X40A – Commutation Measuring System (Connector Type E)	<u>68</u>
11.2.3	X63A – Motor Connection MD84 (Connector Type E)	<u>69</u>
11.2.4	Connection Diagrams (Connector Type E)	<u>70</u>
11.3	Connector Type M	<u>71</u>
11.3.1	X26C – Resolver (Connector Type M)	<u>71</u>
11.3.2	X40B – Commutation Measuring System (Connector Type M)	<u>72</u>
11.3.3	X63B – Motor Connection MD84 (Connector Type M without Motor Brake)	<u>74</u>
11.3.4	X63C – Motor Connection MD84 (Connector Type M with Motor Brake)	<u>75</u>
11.3.5	Connection Diagrams (Connector Type M)	<u>77</u>
11.4	Connector Type B and C	<u>78</u>
11.4.1	X26D – Resolver (Connector Type B+C)	<u>79</u>
11.4.2	X40C - Commutation Measuring System (Connector Type B+C)	<u>80</u>
11.4.3	X63D – Motor Connection of MD84 (Connector Type B+C)	<u>81</u>
11.4.4	Connection Diagrams (Connector Type B+C)	<u>83</u>
12	Appendix	85
12 A	Notes for Terminal Connections	85
12 A 1	Terminal Connections of MD84 (First Generation)	85
12.A.2	Terminal Connections of MD84 (Second Generation)	85
12.A.3	Terminal Connections of MD84 (Third Generation)	86
12.B	Ferrite Cores at X63	89
12.B.1	Ferrite Cores at X63 (MD84 of the First Generation)	89
12.B.2	Ferrite Cores at X63 (MD84 of the Second Generation)	90
12.B.3	Ferrite Cores at X63 (MD84 Nano)	90
13	Glossary	<u>91</u>
14	Index	93

This chapter descirbes symbols, signal words and abbreviations used in this manual.

1.1 Illustration of Warnings

Depending on their degree of risk, warnings are classified into different levels. In the manual, the different levels and types of dangers are represented as follows:

- [1] Risk level (signal word/warning color) Classification of the risk
- [2] Safety symbol Risk of injury
- [3] Risk symbol Graphic representation of the source of risk

Risk levels

Risk Level	Description	
	Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.	
WARNING Indicates a potentially hazardous situation which, if not avoided result in death or serious injury.		
CAUTION Indicates a potentially hazardous situation which, if not avoid in minor or moderate injury or property damage.		
NOTICE	Indicates a hazardous situation which, if not avoided, may result in property damage.	

Risk symbols

Risk symbol	Description
\wedge	General hazardous situation
	Risk of injury due to electric shock
	Risk of injury due to hot surfaces
	Potentially risk of injury when working on machines with open covers/ doors

Risk symbol	Description
	Risk of injury due to flying objects
	Destruction risk of electrostatically sensitive components
!	Risk of property damage

1.2 Technical Symbols

Symbol	Description	
*	LED indicator: LED on	
0	LED indicator: LED off	
÷	LED indicator: LED flashes	

1.3 Illustration of General Notices

Symbol	Description
	Hint with additional, further information
	Tip with suggestions and useful information

1

Safety Instructions

These safety instructions include important information regarding your safety and must be observed during installation and operation of SIEB & MEYER. Read them carefully and keep them for later use.

Also adhere to safety instructions in the product documentation and on the device.

according to:

- Low-Voltage Directive 2014/35/EU
- Machinery Directive 2006/42/EC
- EMC Directive 2014/30/EU
- DIN EN 60034

2

DANGER

Risk of injury and material damage due to wrong handling

Read the available documentation before mounting and initial operation. Wrong handling of the motor can cause injury to the operator and material damage. Keep the technical data and information to the connection requirements (refer to the type plate and to the technical documentation.

WARNING

Risk of serious injuries and material damage

Any works regarding installation, initial operation and maintenance must be carried out by trained staff only.Furthermore, electricians which connect feed-in systems must be approved by the local DSO (distribution system operator).

Trained staff, according to this fundamental safety instruction, are persons familiar with the installation, mounting, initial and permanent operation of the product and they are qualified appropriately for the work. The standards DIN VDE 0100 and DIN VDE 0110 as well as the national accident prevention regulations shall be considered!

When installing feed-in systems adhere to all applicable regulations, special safety instructions and technical connection conditions of the local DSO.

🚹 DANGER

Risk of burn due to hot surfaces

During operation the motors can have hot surfaces according to their protection system. The surface temperature can exceed 100 °C.

Measure the temperature and wait until the motor has cooled down to 40 °C before touching it.

🚹 DANGER

High voltages at the motor connectors

High voltages occur at the motor connectors during the operation of a servo amplifier/frequency converter.

Never operate servo amplifiers/frequency converters without connected plugs. Otherwise, you may seriously be injured when touching the contacts at the motor connectors unintentionally.

DANGER

Risk due to unexpected movement of machine parts

The machine manufacturer must establish a hazard analysis for the machine and take appropriate measures to ensure that unexpected movements do not cause injury to the operator or material damage.

A DANGER

Dangerous shock currents

Earthing and shielding measures are required to protect devices and persons. To ensure the safety of the operator earthing must be carried out with low impedance. With respect to the ground connection one of the following actions must be done:

- connect the motor housing to the ground of the machine or
 connect the ground terminal of the motor connector to the
 - connect the ground terminal of the motor connector to the central ground point of the machine.

Consider the following with regard to shielding: Always use shielded motor cables!

🚹 DANGER

Risk of injury due to high voltages at the power connectors

Power connectors can lead voltages even if the motor is not rotating.

Never unplug the electrical connections of the motors while the motor is energized. This may lead to electric arcs and cause injuries or damage contacts.

DANGER

Risk of injury due to flying parts

A fitted feather key in a free-running motor can fly away from the motor and injure the operator.

Remove or secure any fitted shaft feather key in a free-running motor.

🚹 DANGER

Risk of injury when motor holding brake is released

When the motor holding brake is released and the servo drive does not supply power to hanging loads (vertical axes), the load might drop. This may cause personal injury to the machine operator.

Ensure the functional safety of the vertical axes by means of an external mechanical brake.

2.1 Appropriate Use

	NOTICE
	Risk of damage to the motors due to incorrect wiring
	If connected directly to mains, the motor would be demagnetized and the motor winding would be destroyed.
	Never connect the motors directly to mains.

The synchronous servo motors of the series AKM are particularla designed for application in industrial robots, textile machines, packaging machines and similar machines with high dynamic requirements.

Never operate the motors under other conditions than defined in this manual.

The AKM-motors are exclusively intended to be driven by servo amplifiers under speed and / or torque control.

The motors are installed in electrical installations or machines and shall only be initially operated as integrated components of an installation or machine.

The thermal contact integrated in the motor windings must be evaluated and monitored.

2.2 Improper Use

Operating the standard motors is forbidden

- when directly connected to mains,
- in areas exposed to explosion hazards,
- in areas where food is stored,
- in contact with etching and/or electrically conducting acids, bases, oils or dusts.

Appropriate use of the motor is forbidden, if the machine in which the motor has been installed

- does not meet the regulations of the EU Machinery Directive,
- does not meet the regulations of the EMC Directive,
- does not meet the regulations of the Low-Voltage Directive.
- Holding brakes (when installed) must not be used solely to ensure the functional safety.

2.3 Transport

NOTICE

Only qualified staff is authorized to transport the motors in the recyclable original packaging of the manufacturer. Avoid impact shocks, especially to the shaft end of the motor.

If the packaging is damaged, check the motor for visible damage. Inform the carrier and, if applicable, the manufacturer.

- climate category: 2K3 according to DIN EN 50178
- ► temperature during transport: -25°C to +70°C, max. 20K/hour, variable
- humidity during transport: relative humidity 5% 95%, not condensing

2.4 Packaging

Motor type	Cardboard box	Max. stacking height
AKM1	x	10
AKM2	x	10
AKM3	x	6
AKM4	x	6
AKM5	х	5
AKM6	х	1
AKM7	х	1

Cardboard packaging with Instapak® foam cushion

Tab. 1: AKM-motor types with packaging and max. stacking height

2.5 Storage

- climate category: 1K4 according to DIN EN 50178
- storage temperature -25 °C to +55 °C
- max. 20K/hour, variable
- humidity relative humidity 5% to 95%, not condensing
- Always use the original recyclable packaging of the manufacturer for storage.
- max. stacking height: see table 1 "AKM-motor types with packaging and max. stacking height", page 12
- Storage period: without limitation

2.6 Maintenance / Cleaning

- Only qualified staff is authorized to maintain and clean the motors.
- The ball bearings have a grease lubrication which lasts for 20,000 operating hours under normal conditions..
- The ball bearing shall be replaced after 20,000 operating hours under rated conditions.

- Check the motor for bearing noise every 2,500 operating hours, respectively each year.
- ► If noise is detected, the motor shall not be operated anymore. Replace the ball bearings before operating the motor again.
- Opening the motor results in the forfeiture of warranty.
- Clean the housing with Isopropanol or similar, **do not immerse or spray**.

The EU guidelines for electromagnetic compatibility (EMC) must be considered for the initial operation of all SIEB & MEYER devices.

The manual "EMC Guidelines" is available in German and English and includes:

- EMC rules ►
- ► information regarding the professional grounding and wiring
- ► safety-relevant aspects
- extracts from the EMC product standard ►
- possibilities for the connection to different supply system types ►

Availability:

- hard copy version directly from SIEB & MEYER
- ► PDF file undr www.sieb-meyer.de/Service/Downloads

General Information

4.1 Technical Characteristics

The synchronous motors of the series AKM are brushless three-phase current motors for demanding servo applications. When combined with SIEB & MEYER servo amplifiers the motors are particularly suitable for positioning tasks in industrial robots, machine tools, transfer lines etc. with high demands for dynamics and stability..

The servo motors are equipped with permanent magnets in the motor. The neodymium magnet material is an important factor for the highly dynamic operation of these motors. A three-phase winding, which is supplied by the servo amplifier, is installed in the stator. The motor does not have any brushes, commutation is done electronically in the servo amplifier.

The winding temperature is monitored via temperature sensors in the stator windings and signaled via a potential-free thermistor (PTC, $\leq 550 \Omega / \geq 1333 \Omega$).

The default feedback system installed in the motors is a resolver. The alternatively offered feedback systems partly cause a change of the motor length and can not be retrofitted.

The motors are available with or without built-in holding brake. Retrofitting the brake is not possible.

The motors have a matt black varnish (RAL 9005), which is not resistant against solvents (e.g. triclorethylene, nitro-thinners, or similar..

4.2 General Technical Data

Climate category	3K3 according toDIN EN 50178		
Ambient temperature	5 °C to +40 °C for site altitudes up to 1,000 m above MSL		
	Consult our service department for ambient temperatures above 40 °C and encapsulated installation of the motors.		
Admissible humidity (at rated data)	95% relative humidity, not bedewing		
Power derating	1% / K in the range of from 40 $^\circ\text{C}$ to 50 $^\circ\text{C}$ up to altitudes of 1,000 m above MSL		
	(currents and torques)		
	 For site altitudes above 1,000 m above MSL and 40 °C 6% at 2,000 m above MSL 17% at 3,000 m above MSL 30% at 4,000 m above MSL 55% at 5,000 m above MSL 		
	No power derating at site altitudes above 1,000 m above MSL and temperature reduction by 10 K / 1,000 m $$		
Service life of all bearings	≥ 20,000 operating hours		

4.3 Default Equipment

4.3.1 Types of Construction

The basic type of construction of the synchronous AKM servo motors is IM B5 according to DIN EN 60034-7. The allowed mounting positions are indicated in the technical data.

Fig. 1: Construction types of AKM-motors

4.3.2 Shaft End, A-Side

Power is transmitted via the cylindric shaft end A, fit k6 (: h7) with tightening thread, but without feather key groove.

Consider that high radial forces occur when the motors drive the shaft via pinion or toothed belt. The permissible values at the shaft end depend on the speed (refer to the diagrams in <u>chapter 10 "Technical Data", page 33</u>. The max. values at speeds of 3,000 rpm are described in the technical data. If the point of application of force is in the middle of the free shaft end, FR can be increased by 10%.

The bearings have a total life of 20,000 operating hours.

Double-coned collets, possibly combined with metal bellows couplings, have proved to be ideal free from backlash coupling elements.

4.3.3 Flange

- Flange dimensions according to IEC standard, fit j6 (AKM1: h7)
- precision according to DIN SPEC 42955
- tolerance class: N

4.3.4 IP Code

Standard motor	Connection code	Shaft sealing ring	IP code	
AKM1 to 4	М	with or without	IP20	
AKM1	С	without	IP40	
AKM1	С	with	IP65	
AKM2-AKM7	B, C	without	IP54	
AKM2-AKM7	B, C	with	IP65	

4.3.5 Device Protection

NOTICE

Damage of the motor due to short-term, high overloads

The standard version of each AKM-motor is equipped with a thermal switch. The switching point is at about 135 °C. The thermal protection switch **does not provide** any protection against short, heavy overload.

4.3.6 Insulation Class

The motors comply with the insulation class F according to IEC IEC 60085.

4.3.7 Vibration Class

The motors comply with the level A according to DIN EN 60034-14.

4.3.8 Connection

AKM-motors are equipped with angular connectors (AKM1: straight connectors at cable ends) or Molex connectors for power supply and resolver signals.

Mating connectors are not part of the delivery.

4.3.9 Feedback System

Standard	Resolver	2-pole, hollow shaft
Optional	Encoder	Incremental encoder with commutation tracks, resolution 4096 lines

Consider that motors with installed motor brake are longer.

4.3.10 Holding Brake

The motors AKM2 to AKM7 are available with installed holding brake. When the spring-operated brake (24 V_{DC}) is de-energized, it blocks the rotor.

A DANGER
Risk of injury while activating the motor holding brake
The holding brakes are conceived as standstill brakes and are not suited for continuous operational braking. If the brake is released the rotor may move without residual torque! The motor length increases with an installed holding brake.
The holding brakes can be controlled directly by the servo amplifiers (risk of injury to the operator!); in this case the winding is suppressed in the servo amplifier.
If the holding brake is not controlled directly by the servo amplifier, additional wiring is required (e.g. varistor). Please contact our service department.
To avoid injury to the operator when operating the holding, an additional n/o contact (normally open) must be connected in the brake circuit and an anti-surge device (e.g. varistor) for the brake must be provided.

🔥 DANGER

Risk of injury when motor holding brake is released

When the motor holding brake is released and the servo drive does not supply power to hanging loads (vertical axes), the load might drop. This may cause personal injury to the machine operator.

Ensure the functional safety of the vertical axes by means of an external mechanical brake.

4.3.11 Number of Poles

Motor	Number of poles
AKM1	6
AKM2	6
AKM3	8
AKM4	10
AKM5	10
AKM6	10
AKM7	10

4.4 Optional Equipment

Holding brake

- The holding brake is integrated in the motor.
- If a holding brake is installed, the motor length increases.

Radial shaft sealing ring

- Radial shaft sealing ring (Teflon) for sealing against oil mist and oil spray.
- The IP Code results from the connection code and whether or not the motor is equipped with a shaft sealing ring (section 4.3.4 "IP Code", page 19).

- The motors are available with feather key groove and inserted feather key.
- The shaft is balanced with a with a short (half) key.

Encoder

Another feedback system installed in the motor instead of the resolver.

With the exception of the shaft sealing ring all options can not be retrofitted.

Optional equipment like the shaft sealing ring, holding brake or encoder can cause a reduction of the rated data..

4.5 Selection Criteria

The servo amplifier and the servo motor form a closed speed or torque loop control.

The most important selection criteria are listed in the following table:

Standstill torque	M ₀	[Nm]
Rated speed at rated connection supply voltage	n _n	[rpm]
Moment of inertia of motor and load	J	[kgcm2]
Effective torque (calculated)	M _{rms}	[Nm]

5.1 Type Plate

Fig. 2: Type plate for AKM-motors AKM1 to AKM7

MODEL	Motor type designation
CUST P/N	Customer material number
I _{CS}	I0rms (standstill current)
M _{CS}	M0 (standstill torque)
Vs	Un (intermediate circuit voltage)
N _{rtd}	nn (rated speed at Un)
P _{rtd}	Pn (rated power)
R _m	R25 (winding resistance of the motor at 25 °C)
SERIAL	Serial number
AMBIENT 40 °C	Admissible ambient temperature

5.2 Device Code

The following designations are used in this manual to distinguish the different motors:

Motor	Flange Ø	Flange Ø Standstill torque Te	
	[mm]	[Nm]	
AKM1	40	0,18 - 0,41	page 33
AKM2	58	0,48 - 1,42	<u>page 36</u>
AKM3	70	1,15 - 2,88	page 41
AKM4	84	1,95 - 6,00	page 44
AKM5	108	4,7 - 14,4	page 50
AKM6	138	11,9 - 25,00	page 54
AKM7	188	29,4 - 53,00	page 59

Dimensions

AKM1

Fig. 3: Dimensions for AKM-motors AKM1 to AKM7

Motor	a [mm]	b [mm]	c [mm]	d [mm]	e [mm]	k [mm]
AKM11x	30	8	72	25	40	69,6
AKM12x	30	8	72	25	40	88,6
AKM13x	30	8	72	25	40	107,6
AKM21x	40	9	90	20	58	86,2
AKM22x	40	9	90	20	58	105,2
AKM23x	40	9	90	20	58	124,2
AKM24x	40	9	90	20	58	143,2
AKM31x	60	14	109	30	70	109,8
AKM32x	60	14	109	30	70	140,8
AKM33x	60	14	109	30	70	171,8
AKM41x	80	19	123	40	84	118,8
AKM42x	80	19	123	40	84	147,8
AKM43x	80	19	123	40	84	176,8
AKM44x	80	19	123	40	84	205,8
AKM51x	110	24	147	50	108	127,5
AKM52x	110	24	147	50	108	158,5
AKM53x	110	24	147	50	108	189,5
AKM54x	110	24	147	50	108	220,5
AKM62x	130	32	177	58	138	153,7
AKM63x	130	32	177	58	138	178,7
AKM64x	130	32	177	58	138	203,7
AKM65x	130	32	177	58	138	228,7
AKM72x	180	38	227	80	188	192,5
AKM73x	180	38	227	80	188	226,5
AKM74x	180	38	227	80	188	260,5

Mounting

This section described instructions to be observed when mounting the AKM-motors.

Risk of serious injuries and material damage
Any works regarding installation, initial operation and maintenance must be carried out by trained staff only.Furthermore, electricians which connect feed-in systems must be approved by the local DSO (distribution system operator).
Trained staff, according to this fundamental safety instruction, are persons familiar with the installation, mounting, initial and permanent operation of the product and they are qualified appropriately for the work. The standards DIN VDE 0100 and DIN VDE 0110 as well as the national accident prevention regulations shall be considered!
When installing feed-in systems adhere to all applicable regulations, special safety instructions and technical connection conditions of the local DSO.

- Protect the motors against inadmissible stresses. Take care, especially during transport and handling, that components are not bent and / or insulation distances are not modified.
- The mounting place must be free from conductive and aggressive material. When mounting the motor in V3 position (shaft end upwards), make sure that no liquids can enter the bearings.

A For encapsulated mounting, contact our service department beforehand.

Ensure sufficient ventilation of the motors and consider the admissible ambient and flange temperature.

For ambient temperatures above 40 °C contact our service department before mounting the motor.

- Servo motors are precision devices. The flange and the shaft are especially susceptible to damages during storage and mounting. Consider the following application advice:
 - Avoid application of extreme forces.
 - Always use the provided tightening thread for mounting couplings, toothed belts or pulley wheels and warm up the drive components, if possible.
 - Avoid shocks or other application of force. These will cause damage to the ball bearings and the shaft (A = shim washer)

- If possible, only use backlash-free, frictionally engaged collet or couplings. Make sure that the coupling is aligned correctly. A displacement leads to impermissible vibrations and to the destruction of ball bearings and the coupling.
- Consider the admissible radial forces when mounting toothed belts. Too high radial loads on the shaft cause significant reductions of the motor life..

- Avoid axial loads on the motor shaft as far as possible. Axial loads on the shaft cause significant reductions of the motor life.
- Always avoid a mechanically overload on the motor shaft by using a rigid coupling with external additional bearings (e.g. in a gearbox).
- Consider the number of motor poles and of resolver poles and make sure that the number of poles is set correctly in the connected servo amplifiers. Incorrect settings can lead to the destruction of the motor, particularly of small motors.

Connection

This section describes important information to be observed when connecting the AKM-motors.

Refer to the <u>chapter 11 "Connection Examples for AKM-motors"</u>, page 65 for detailed information about the connection of different connector types to a SIEB & MEYER CNC 8x.00.

Risk of serious injuries and material damage

Any works regarding installation, initial operation and maintenance must be carried out by trained staff only.Furthermore, electricians which connect feed-in systems must be approved by the local DSO (distribution system operator).

Trained staff, according to this fundamental safety instruction, are persons familiar with the installation, mounting, initial and permanent operation of the product and they are qualified appropriately for the work. The standards DIN VDE 0100 and DIN VDE 0110 as well as the national accident prevention regulations shall be considered!

When installing feed-in systems adhere to all applicable regulations, special safety instructions and technical connection conditions of the local DSO.

🚹 DANGER

High voltages

Even if the power supply is off (contacts of main contactor open), the motor lines still conduct high voltages!

Wait at least five minutes after having disconnected the servo amplifiers from the supply voltage, before touching energized parts (e.g. contacts, threaded bolts) or unplug connectors.

Capacitors in the servo amplifier carry dangerous voltages for up to five minutes after the supply voltage was turned off. If possible and for safety reasons measure the voltage in the intermediate circuit and wait until the voltage has fallen down under 40 V.

- When mounting and connecting the motor, always ensure that the motor is deenergized, i.e. the operating voltage of all connected devices must be off Make sure that the switch cabinet remains turned off (barrier, warning signals etc.). The voltages of the connected devices will be activated again during the initial operation.
- Never unplug the electrical connections of the motors while the motor is energized. Dangerous residual voltages in the capacitors of the servo amplifiers can be present up to 5 minutes after the mains supply was disconnected. Measure the intermediate circuit voltage and wait until it has fallen below.

The ground symbol /// used in the connection diagrams means that you must provide an electrical connection with a surface as large as possible between the

switch cabinet This connection is intended to suppress HF interference and must not be confused with the PE symbol (protective measure acc. toDIN EN 60204). Also consider the wiring diagrams in the documentation of the connected servo amplifier.

Initial Operation

WARNING

Important notes for the initial operation of the motors

Risk of serious injuries and material damage

Any works regarding installation, initial operation and maintenance must be carried out by trained staff only.Furthermore, electricians which connect feed-in systems must be approved by the local DSO (distribution system operator).

Trained staff, according to this fundamental safety instruction, are persons familiar with the installation, mounting, initial and permanent operation of the product and they are qualified appropriately for the work. The standards DIN VDE 0100 and DIN VDE 0110 as well as the national accident prevention regulations shall be considered!

When installing feed-in systems adhere to all applicable regulations, special safety instructions and technical connection conditions of the local DSO.

A DANGER

Risk of injury and material damage due to wrong handling

Read the available documentation before mounting and initial operation. Wrong handling of the motor can cause injury to the operator and material damage. Keep the technical data and information to the connection requirements (refer to the type plate and to the technical documentation.

High voltages

DANGER

Energized parts lead high voltages up to 900 V during the initial operation of the motor which may cause serious injuries or death by electric shock.

Ensure that all energized connected parts are secured against dangers caused when they are touched.

A DANGER

Risk of burn due to hot surfaces

During operation the motors can have hot surfaces according to their protection system. The surface temperature can exceed 100 $^\circ\text{C}.$

Measure the temperature and wait until the motor has cooled down to 40 °C before touching it.

<u> A</u>DANGER

Risk due to unexpected movement of machine parts

The machine manufacturer must establish a hazard analysis for the machine and take appropriate measures to ensure that unexpected movements do not cause injury to the operator or material damage.

🚹 DANGER

High voltages

Even if the power supply is off (contacts of main contactor open), the motor lines still conduct high voltages!

Wait at least five minutes after having disconnected the servo amplifiers from the supply voltage, before touching energized parts (e.g. contacts, threaded bolts) or unplug connectors.

Capacitors in the servo amplifier carry dangerous voltages for up to five minutes after the supply voltage was turned off. If possible and for safety reasons measure the voltage in the intermediate circuit and wait until the voltage has fallen down under 40 V.

9.1 Guide for Initial Operation

This section describes a typical procedure for initial operation. Depending on the application of the devices, other procedures may be appropriate or necessary.

- ◇ Check the mounting and the alignment of the motors.
- Check the drive elements (coupling, gear, belt pulley) for correct seat (consider the admissible radial and axial forces).
- Check the wiring of the connections at the motor and at the servo amplifier. Ensure correct grounding.
- Check the function of the holding brake, if available. (Apply 24 V, the brake must be released).
- Check, whether the motor can be rotated freely (release the brake, if available). Listen for grinding noises.
- Check whether all measures against accidental contact with moving and energized parts have been carried out.
- Start the initial operation of the drive in accordance with the instructions described in the documentation of the servo amplifier.
- For multi-axis systems, start the initial operation for every drive unit servo amplifier/motor individually..

Technical Data

All indicated data apply for ambient temperatures of 40 °C and winding temperatures of 100 K. The tolerance for actual data±10%. All currents are, unless otherwise defined, effective values!

AKM1

Also refer to the glossary in the appendix of this manual.

10.1

Technical data		Symbol	Unit	AKM11x		(
				11B	11C	11E
Electrical data						
	Standstill torque (1)	M ₀	Nm	0.18	0.18	0.18
	Standstill current	I _{0rms}	А	1.16	1.45	2.91
	Max. rated mains voltage	U _N	VAC		230	
DC	Rated speed	n _n	rpm	—	—	6000
75 V	Rated torque (1)	M _n	Nm	—	—	0.18
= N	Rated power	Pn	kW	—	—	0.11
2 <	Rated speed	n _n	rpm	4000	6000	—
= 115	Rated torque (1)	M _n	Nm	0.18	0.18	—
N	Rated power	Pn	kW	0.08	0.11	—
> (Rated speed	n _n	rpm	8000	—	—
= 23(Rated torque (1)	M _n	Nm	0.17	—	—
"N N	Rated power	P _n	kW	0.14	—	—
<u>ک</u> ر	Rated speed	n _n	rpm	—	—	—
= 40(Rated torque (1)	M _n	Nm	—	—	—
"N N	Rated power	P _n	kW	—	—	—
0 V	Rated speed	n _n	rpm	—	—	—
= 48	Rated torque (1)	M _n	Nm	—	—	—
N	Rated power	P _n	kW	—	—	—
	Peak current	I _{0max}	А	4.65	5.79	11.6
	Peak torque	M _{0max}	Nm	0.61	0.61	0.61
	Torque constant	K _{Trms}	Nm / A	0.16	0.13	0.06
	Voltage constant	K _{Erms}	mVmin	10.2	8.3	4.1
	Winding resistance Ph-Ph	R25	Ω	18.2	12.1	3.1
	Winding inductance Ph-Ph	L	mH	12.5	8.3	2.0
Mechanical data						
	Rotor moment of inertia	J	kgcm²	0.017		
	Number of poles			6		
	Static friction torque	M _R	Nm	0.0011		
	Thermal time constant	t _{TH}	min		4	
	Weight (standard)	G	kg		0.35	

Technical data		Symbol	Unit	AKM11x		
				11B	11C	11E
	Admissible radial load at shaft end at 8,000 rpm	F _R	Ν	30		
	Admissible axial load at shaft end at 8,000 rpm	F _A	Ν		12	

⁽¹⁾ Reference flange of aluminum 254 mm * 254 mm * 6.35 mm

Technical data		Symbol	Unit	AKM12x			
				12C	12E		
Elec	Electrical data						
	Standstill torque (1)	M ₀	Nm	0.31	0.31		
	Standstill current	I _{0rms}	A	1.51	2.72		
	Max. rated mains voltage	U _N	VAC				
75 VDC	Rated speed	n _n	rpm	—	3000		
	Rated torque (1)	M _n	Nm	—	0.31		
□	Rated power	P _n	kW	-	0.10		
>	Rated speed	n _n	rpm	4000	8000		
= 115	Rated torque (1)	M _n	Nm	0.30	0.28		
NN	Rated power	Pn	kW	0.13	0.23		
>	Rated speed	n _n	rpm	8000	—		
= 23(Rated torque (1)	M _n	Nm	0.28	—		
n N	Rated power	Pn	kW	0.23	—		
>	Rated speed	n _n	rpm	—	—		
= 40(Rated torque (1)	M _n	Nm	—	—		
= NU _ V	Rated power	Pn	kW	—	—		
	Rated speed	n _n	rpm	—	—		
= 48(Rated torque (1)	M _n	Nm	—	—		
N N	Rated power	Pn	kW	—	—		
	Peak current	I _{0max}	A	6.06	10.9		
	Peak torque	M _{0max}	Nm	1.08	1.08		
	Torque constant	K _{Trms}	Nm / A	0.21	0.11		
	Voltage constant	K _{Erms}	mVmin	13.3	7.2		
	Winding resistance Ph-Ph	R25	Ω	12.4	3.9		
	Winding inductance Ph-Ph	L	mH	9.1	2.7		
Mec	nanical data				-		
	Rotor moment of inertia	J	kgcm²	0.031			
	Number of poles			6			
	Static friction torque	M _R	Nm	0.0021			
	Thermal time constant	t _{TH}	min	6			
	Weight (standard)	G	kg	0.49			
	Admissible radial load at shaft end at 8,000 rpm	F _R	N	30			
	Admissible axial load at shaft end at 8,000 rpm	F _A	N	1:	2		

 $^{(1)}\mbox{Reference}$ flange of aluminum 254 mm * 254 mm * 6.35 mm

Technical data		Symbol	Unit	AKM13x	
				13C	13E
Elect	ical data				
	Standstill torque (1)	M ₀	Nm	0.41	0.40
	Standstill current	I _{0rms}	A	1.48	2.40
	Max. rated mains voltage	U _N	VAC		
75 V _{DC}	Rated speed	n _n	rpm	—	2000
	Rated torque ⁽¹⁾	M _n	Nm	—	0.40
= 0	Rated power	P _n	kW	—	0.08
>	Rated speed	n _n	rpm	3000	7000
= 115	Rated torque ⁽¹⁾	M _n	Nm	0.41	0.36
Ω Ω	Rated power	Pn	kW	0.13	0.27
>	Rated speed	n _n	rpm	8000	_
= 230	Rated torque ⁽¹⁾	M _n	Nm	0.36	_
UN N	Rated power	Pn	kW	0.30	—
> 0	Rated speed	n _n	rpm	—	_
= 40(Rated torque (1)	M _n	Nm	—	_
N N	Rated power	Pn	kW	—	_
∧ 0	Rated speed	n _n	rpm	—	_
= 48	Rated torque ⁽¹⁾	M _n	Nm	—	—
N	Rated power	Pn	kW	—	_
	Peak current	I _{0max}	A	5.93	9.6
	Peak torque	M _{0max}	Nm	1.46	1.44
	Torque constant	K _{Trms}	Nm / A	0.28	0.17
	<u>Voltage constant</u>	K _{Erms}	mVmin	17.9	10.9
	Winding resistance Ph-Ph	R25	Ω	13.5	5.4
	Winding inductance Ph-Ph	L	mH	10.3	3.8
Mech	anical data				
	Rotor moment of inertia	J	kgcm²	0.045	
	Number of poles			6	
	Static friction torque	M _R	Nm	0.00)31
	Thermal time constant	t _{TH}	min	7	
	Weight (standard)	G	kg	0.6	33
	Admissible radial load at shaft end at 8,000 rpm	F _R	N	30	
	Admissible axial load at shaft end at 8,000 rpm	F _A	N	1:	2

⁽¹⁾ Reference flange of aluminum 254 mm * 254 mm * 6.35 mm

Connections and cables

Connector	АКМ1		
Power connection:	4 + 4-pole, round, 0.5 m at cable end		
Motor cable, shielded	4 x 1		
Motor cable with control leads, shielded	4 x 1 + 2 x 0.75		
Resolver connection	12-pole, round, 0.5 m at cable end		
Resolver cable, shielded	4 x 2 x 0.25 mm²		

Connector	АКМ1			
Encoder connection (option)	17-pole, round, 0.5 m at cable end			

Radial forces / axial forces at the shaft end

Fig. 4: Radial forces / axial forces at the shaft endAKM1

10.2 AKM2

Technical data		Symbol	Unit	AKM21x			
				21C	21E	21G	
Ele	Electrical data						
	Standstill torque (1)	M ₀	Nm	0.48	0.50	0.50	
	Standstill current	I _{0rms}	А	1.58	3.11	4.87	
	Max. rated mains voltage	U _N	VAC		480		
B	Rated speed	n _n	rpm	—	2000	4000	
75 V	Rated torque (1)	M _n	Nm	—	0.48	0.46	
)	Rated power	Pn	kW	—	0.10	0.19	
U _N = 115 V	Rated speed	n _n	rpm	2500	7000	_	
	Rated torque ⁽¹⁾	M _n	Nm	0.46	0.41	—	
	Rated power	Pn	kW	0.12	0.30	—	
U _N = 230 V	Rated speed	n _n	rpm	8000	—	_	
	Rated torque ⁽¹⁾	M _n	Nm	0.39	—	_	
	Rated power	P _n	kW	0.32	—	—	
> 0	Rated speed	n _n	rpm	—	—	—	
= 40	Rated torque ⁽¹⁾	M _n	Nm	—	—	—	
N	Rated power	P _n	kW	—	—	—	
> 0	Rated speed	n _n	rpm	—	—	—	
= 48	Rated torque (1)	M _n	Nm	—	—	—	
UN .	Rated power	P _n	kW	—	—	—	
	Peak current	I _{0max}	A	6.3	12.4	19.5	
	Peak torque	M _{0max}	Nm	1.47	1.49	1.51	
	Torque constant	K _{Trms}	Nm / A	0.30	0.16	0.10	

Technical data		Symbol	Unit		AKM21x	
				21C	21E	21G
	Voltage constant	K _{Erms}	mVmin	19.5	10.2	6.6
	Winding resistance Ph-Ph	R25	Ω	13.0	3.42	1.44
	Winding inductance Ph-Ph	L	mH	19	5.2	2.18
Мес	chanical data					
	Rotor moment of inertia	J	kgcm²		0.11	
	Number of poles				6	
	Static friction torque	M _R	Nm		0.002	
	Thermal time constant	t _{TH}	min		8	
	Weight (standard)	G	kg		0.82	
	Admissible radial load at shaft end at 8,000 rpm	F _R	N		145	
	Admissible axial load at shaft end at 8,000 rpm	F _A	N		60	

⁽¹⁾Reference flange of aluminum 254 mm * 254 mm * 6.35 mm

Technical data		Symbol	Unit		AKM22x			
				22C	22E	22G		
Electrical data								
	Standstill torque (1)	M ₀	Nm	0.84	0.87	0.88		
	Standstill current	I _{0rms}	А	1.39	2.73	4.82		
	Max. rated mains voltage	U _N	VAC		480			
ЫС	Rated speed	n _n	rpm	_	1000	2500		
75 V	Rated torque ⁽¹⁾	M _n	Nm	_	0.85	0.83		
_= □	Rated power	Pn	kW	_	0.09	0.22		
<u>ر</u>	Rated speed	n _n	rpm	1000	3500	7000		
= 115	Rated torque (1)	M _n	Nm	0.83	0.81	0.74		
N N	Rated power	Pn	kW	0.09	0.30	0.54		
>	Rated speed	n _n	rpm	3500	8000			
= 23(Rated torque (1)	M _n	Nm	0.78	0.70			
nN N	Rated power	P _n	kW	0.29	0.59	_		
<u>ک</u> (Rated speed	n _n	rpm	8000	—			
= 40(Rated torque (1)	M _n	Nm	0.68	—			
N N	Rated power	Pn	kW	0.57	_	_		
∧ 0	Rated speed	n _n	rpm	8000	—	_		
= 48	Rated torque (1)	M _n	Nm	0.68	—	_		
N N	Rated power	Pn	kW	0.57	—	—		
	Peak current	I _{0max}	А	5.6	10.9	19.3		
	Peak torque	M _{0max}	Nm	2.73	2.76	2.79		
	Torque constant	K _{Trms}	Nm / A	0.61	0.32	0.18		
	Voltage constant	K _{Erms}	mVmin	39	20.4	11.7		
	Winding resistance Ph-Ph	R25	Ω	20	5.22	1.69		
	Winding inductance Ph-Ph	L	mH	35.5	9.7	3.19		
Med	Aechanical data							

Technical data		Symbol	Unit		AKM22x	
				22C	22E	22G
	Rotor moment of inertia	J	kgcm²		0.16	
	Number of poles				6	
	Static friction torque	M _R	Nm	0.005		
	Thermal time constant	t _{TH}	min		9	
	Weight (standard)	G	kg		1.1	
	Admissible radial load at shaft end at 8,000 rpm	F _R	Ν		145	
	Admissible axial load at shaft end at 8,000 rpm	F _A	Ν		60	

 $^{(1)}\mbox{Reference}$ flange of aluminum 254 mm * 254 mm * 6.35 mm

Technical data		Symbol	Unit		AKM23x		
				23C	23D	23F	
Ele	ctrical data						
	Standstill torque (1)	M ₀	Nm	1.13	1.16	1.18	
	Standstill current	I _{0rms}	А	1.41	2.19	4.31	
	Max. rated mains voltage	U _N	VAC		480		
DC	Rated speed	n _n	rpm	—	—	1500	
75 V	Rated torque (1)	M _n	Nm	—	—	1.15	
= ∩	Rated power	Pn	kW	—	—	0.18	
>	Rated speed	n _n	rpm	1000	1500	4500	
= 115	Rated torque (1)	M _n	Nm	1.11	1.12	1.07	
Ŋ	Rated power	Pn	kW	0.12	0.18	0.50	
>	Rated speed	n _n	rpm	2500	5000	8000	
= 23(Rated torque (1)	M _n	Nm	1.08	1.03	0.94	
п П	Rated power	P _n	kW	0.28	0.54	0.79	
> 0	Rated speed	n _n	rpm	5500	8000	_	
= 40(Rated torque (1)	M _n	Nm	0.99	0.92	_	
N N	Rated power	Pn	kW	0.57	0.77	—	
> 0	Rated speed	n _n	rpm	7000	8000	—	
= 48	Rated torque (1)	M _n	Nm	0.95	0.92	—	
N	Rated power	Pn	kW	0.70	0.77	—	
	Peak current	I _{0max}	A	5.6	8.8	17.2	
	Peak torque	M _{0max}	Nm	3.77	3.84	3.88	
	Torque constant	K _{Trms}	Nm / A	0.80	0.52	0.27	
	Voltage constant	K _{Erms}	mVmin	51.8	33.8	17.6	
	Winding resistance Ph-Ph	R25	Ω	21.2	8.77	2.34	
	Winding inductance Ph-Ph	L	mH	40.7	17.3	4.68	
Me	chanical data	-					
	Rotor moment of inertia	J	kgcm²		0.22		
	Number of poles				6		
	Static friction torque	M _R	Nm		0.007		
	Thermal time constant	t _{TH}	min		10		

Technical data		Symbol	Unit	AKM23x		
				23C	23D	23F
	Weight (standard)	G	kg		1.38	
	Admissible radial load at shaft end at 8,000 rpm	F _R	N	145		
	Admissible axial load at shaft end at 8,000 rpm	F _A	Ν		60	

⁽¹⁾Reference flange of aluminum 254 mm * 254 mm * 6.35 mm

Tec	hnical data	Symbol	Unit		AKM24x	
				24C	24D	24F
Elec	ctrical data					-
	Standstill torque (1)	M ₀	Nm	1.38	1.41	1.42
	Standstill current	I _{0rms}	А	1.42	2.21	3.89
	Max. rated mains voltage	U _N	VAC		480	
ЫС	Rated speed	n _n	rpm	—	—	1000
75 V	Rated torque (1)	M _n	Nm	—	—	1.39
= 0	Rated power	Pn	kW	—	-	0.15
<u>ار</u>	Rated speed	n _n	rpm	—	1500	3000
= 115	Rated torque (1)	M _n	Nm	—	1.36	1.33
N	Rated power	P _n	kW	—	0.21	0.42
۷ ر	Rated speed	n _n	rpm	2000	4000	8000
= 23(Rated torque (1)	M _n	Nm	1.32	1.29	1.12
nN N	Rated power	Pn	kW	0.28	0.54	0.94
> (Rated speed	n _n	rpm	4500	8000	—
= 40(Rated torque (1)	M _n	Nm	1.25	1.11	—
N N	Rated power	Pn	kW	0.59	0.93	—
∧ 0	Rated speed	n _n	rpm	5500	8000	—
= 48	Rated torque (1)	M _n	Nm	1.22	1.11	—
N	Rated power	Pn	kW	0.70	0.93	—
	Peak current	I _{0max}	A	5.7	8.8	15.6
	Peak torque	M _{0max}	Nm	4.73	4.76	4.82
	Torque constant	K _{Trms}	Nm / A	0.97	0.63	0.36
	Voltage constant	K _{Erms}	mVmin	62.4	40.8	23.4
	Winding resistance Ph-Ph	R25	Ω	20.4	9.02	2.77
	Winding inductance Ph-Ph	L	mH	43.8	18.7	6.16
Med	chanical data		-			
	Rotor moment of inertia	J	kgcm ²		0.27	
	Number of poles				6	
	Static friction torque	M _R	Nm		0.01	
	Thermal time constant	t _{TH}	min		11	
	Weight (standard)	G	kg		1.66	
	Admissible radial load at shaft end at 8,000 rpm	F _R	N		145	

Technical data		Symbol	Unit		AKM24x	
				24C	24D	24F
	Admissible axial load at shaft end at 8,000 rpm	F _A	N		60	

(1) -- Reference flange of aluminum 254 mm * 254 mm * 6.35 mm

Technical data of the brake:

Technical data	Symbol [unit]	Value
Holding torque at 120 °C	M _{BR} [Nm]	1.42
Mains voltage	U _{BR} [VDC]	24 ±10%
Electric power	P _{BR} [W]	8.4
Moment of inertia	J _{BR} [kgcm²]	0.011
Release delay time	t _{BRH} [ms]	20
Application delay time	t _{BRL} [ms]	18
Weight of the brake	G _{BR} [kg]	0.27
Typical backlash	[°mech.]	0.46

Connections and cables

Connector	AKM2
Power connection:	4 + 4-pole, round, angular
Motor cable, shielded	4 x 1
Motor cable with control leads, shielded	4 x 1 + 2 x 0.75
Resolver connection	12-pole, round, angular
Resolver cable, shielded	4 x 2 x 0.25 mm²
Encoder connection (option)	17-pole, round
Encoder cable, shielded	8 x 2 x 0.25 mm²

Radial forces / axial forces at the shaft end

Fig. 5: Radial forces / axial forces at the shaft endAKM2

10

10.3 AKM3

Technical data		Symbol	Unit		AKM31x			
				31C	31E	31H		
Elec	trical data				•			
	Standstill torque (1)	M ₀	Nm	1.15	1.20	1.23		
	Standstill current	I _{0rms}	А	1.37	2.99	5.85		
	Max. rated mains voltage	U _N	VAC		480			
Ы	Rated speed	n _n	rpm	—	750	2000		
75 V	Rated torque (1)	M _n	Nm	—	1.19	1.20		
	Rated power	P _n	kW	—	0.09	0.25		
>	Rated speed	n _n	rpm	—	2500	7000		
= 115	Rated torque (1)	M _n	Nm	_	1.17	0.97		
"N N	Rated power	Pn	kW	—	0.31	0.61		
>	Rated speed	n _n	rpm	2500	6000			
= 230	Rated torque (1)	M _n	Nm	1.12	0.95			
"N N	Rated power	Pn	kW	0.29	0.60	—		
>	Rated speed	n _n	rpm	5000	—	_		
= 400	Rated torque (1)	M _n	Nm	1.00	—			
ΝN	Rated power	P _n	kW	0.52	—	_		
>	Rated speed	n _n	rpm	6000	—			
= 48(Rated torque (1)	M _n	Nm	0.91	—	_		
л П	Rated power	Pn	kW	0.57	—			
	Peak current	I _{0max}	А	5.5	12.0	23.4		
	Peak torque	M _{0max}	Nm	3.88	4.00	4.06		
	Torque constant	K _{Trms}	Nm / A	0.85	0.41	0.21		
	Voltage constant	K _{Erms}	mVmin	54.5	26.1	13.7		
	Winding resistance Ph-Ph	R25	Ω	21.4	4.74	1.29		
	Winding inductance Ph-Ph	L	mH	37.5	8.6	2.4		
Mec	hanical data			-				
	Rotor moment of inertia	J	kgcm²		0.33			
	Number of poles				8			
	Static friction torque	M _R	Nm					
	Thermal time constant	t _{TH}	min		0.014			
	Weight (standard)	G	kg		1.55			
	Admissible radial load at shaft end at 8,000 rpm	F _R	N		195			
	Admissible axial load at shaft end at 8,000 rpm	F _A	Ν		65			

⁽¹⁾ Reference flange of aluminum 254 mm * 254 mm * 6.35 mm

Tec	hnical data	Symbol	Unit	AKM32x		
				32C	32D	32H
Elec	ctrical data					
	Standstill torque (1)	M ₀	Nm	2.00	2.04	2.10

Technical data		Symbol	Unit	AKM32x		
				32C	32D	32H
	Standstill current	I _{0rms}	А	1.44	2.23	5.50
	Max. rated mains voltage	U _N	VAC		480	
B	Rated speed	n _n	rpm	—	—	1200
75 V	Rated torque (1)	M _n	Nm	-	—	2.06
	Rated power	P _n	kW	-	—	0.26
>	Rated speed	n _n	rpm	—	1000	3000
= 115	Rated torque (1)	M _n	Nm	—	2.00	1.96
Ŋ	Rated power	Pn	kW	-	0.21	0.62
>	Rated speed	n _n	rpm	1500	2500	7000
= 23(Rated torque (1)	M _n	Nm	1.95	1.93	1.45
N N	Rated power	Pn	kW	0.31	0.51	1.06
> 0	Rated speed	n _n	rpm	3000	5500	—
= 40	Rated torque (1)	M _n	Nm	1.86	1.65	—
Ŋ	Rated power	Pn	kW	0.58	0.95	—
>	Rated speed	n _n	rpm	3500	6000	_
= 48(Rated torque (1)	M _n	Nm	1.83	1.58	—
Ŋ	Rated power	Pn	kW	0.67	0.99	—
	Peak current	I _{0max}	А	5.7	8.9	22.0
	Peak torque	M _{0max}	Nm	6.92	7.05	7.26
	Torque constant	K _{Trms}	Nm / A	1.40	0.92	0.39
	Voltage constant	K _{Erms}	mVmin	89.8	59.0	24.8
	Winding resistance Ph-Ph	R25	Ω	23.8	10.3	1.69
	Winding inductance Ph-Ph	L	mH	46.5	20.1	3.55
Med	chanical data					
	Rotor moment of inertia	J	kgcm²		0.59	
	Number of poles				8	
	Static friction torque	M _R	Nm		0.02	
	Thermal time constant	t _{TH}	min		17	
	Weight (standard)	G	kg		2.23	
	Admissible radial load at shaft end at 8,000 rpm	F _R	N		195	
	Admissible axial load at shaft end at 8,000 rpm	F _A	N		65	

 $^{(1)}\mbox{Reference}$ flange of aluminum 254 mm * 254 mm * 6.35 mm

Technical data		Symbol	Unit	AKM33x			
				33C	33E	33H	
Ele	Electrical data						
	Standstill torque (1)	M ₀	Nm	2.71	2.79	2.88	
	Standstill current	I _{0rms}	А	1.47	2.58	5.62	
	Max. rated mains voltage	U _N	VAC		480		

	1

Tec	hnical data	Symbol	Unit	AKM33x		
				33C	33E	33H
Ы	Rated speed	n _n	rpm	—	—	800
75 V	Rated torque (1)	M _n	Nm	—	—	2.82
 	Rated power	P _n	kW	—	—	0.24
>	Rated speed	n _n	rpm	—	—	2500
= 115	Rated torque (1)	M _n	Nm	—	—	2.66
NU	Rated power	Pn	kW	—	—	0.70
>	Rated speed	n _n	rpm	1000	2000	5500
= 23(Rated torque (1)	M _n	Nm	2.64	2.62	2.27
N	Rated power	Pn	kW	0.28	0.55	1.31
>	Rated speed	n _n	rpm	2000	4500	_
= 400	Rated torque (1)	M _n	Nm	2.54	2.34	_
UN =	Rated power	Pn	kW	0.53	1.10	
>	Rated speed	n _n	rpm	2500	5000	_
= 48(Rated torque (1)	M _n	Nm	2.50	2.27	_
UN .	Rated power	Pn	kW	0.65	1.19	
	Peak current	I _{0max}	A	5.9	10.3	22.5
	Peak torque	M _{0max}	Nm	9.76	9.96	10.2
	Torque constant	K _{Trms}	Nm / A	1.86	1.10	0.52
	Voltage constant	K _{Erms}	mVmin	120	70.6	33.4
	Winding resistance Ph-Ph	R25	Ω	22.6	9.01	1.96
	Winding inductance Ph-Ph	L	mH	53.6	18.5	4.1
Mec	hanical data					
	Rotor moment of inertia	J	kgcm ²		0.85	
	Number of poles				8	
	Static friction torque	M _R	Nm		0.026	
	Thermal time constant	t _{TH}	min		20	
	Weight (standard)	G	kg		2.9	
	Admissible radial load at shaft end at 8,000 rpm	F _R	N		195	
	Admissible axial load at shaft end at 8,000 rpm	F _A	N		65	

⁽¹⁾ Reference flange of aluminum 254 mm * 254 mm * 6.35 mm

Technical data of the brake:

Technical data	Symbol [unit]	Value
Holding torque at 120 °C	M _{BR} [Nm]	2.5
Mains voltage	U _{BR} [VDC]	24 ±10%
Electric power	P _{BR} [W]	10.1
Moment of inertia	J _{BR} [kgcm²]	0.011
Release delay time	t _{BRH} [ms]	25
Application delay time	t _{BRL} [ms]	10
Weight of the brake	G _{BR} [kg]	0.35
Typical backlash	[°mech.]	0.46

Connections and cables

Connector	АКМЗ
Power connection:	4 + 4-pole, round, angular
Motor cable, shielded	4 x 1
Motor cable with control leads, shielded	4 x 1 + 2 x 0.75
Resolver connection	12-pole, round, angular
Resolver cable, shielded	4 x 2 x 0.25 mm²
Encoder connection (option)	17-pole, round
Encoder cable, shielded	8 x 2 x 0.25 mm²

Radial forces / axial forces at the shaft end

Fig. 6: Radial forces / axial forces at the shaft endAKM3

10.4 AKM4

NOTICE

Risk of damage to the motor

Notes for AKM-motors with standstill currents of $I_0 > 6 A_{rms}$

Motors with a standstill current of $I_0 > 6 A_{rms}$ shall **not** be operated with connected Molex connectors.

Cut the Molex connector (5-pole without brake or 8-pole with brake) from the motor and connect the motor with the cable to the servo amplifier. The signal connectors for the resolver signals (10-pole) or the encoder signals (18-pole) can be connected.

Technical data		Symbol	Unit	AKM41x		
				41C	41E	41H
Electrical data						
	Standstill torque (1)	M ₀	Nm	1.95	2.02	2.06
	Standstill current	I _{0rms}	А	1.46	2.85	5.60
	Max. rated mains voltage	U _N	VAC		480	

_	_

Tec	hnical data	Symbol	Unit	AKM41x			
				41C	41E	41H	
ЫС	Rated speed	n _n	rpm	—	—	1000	
75 V	Rated torque (1)	M _n	Nm	—	—	1.99	
" □	Rated power	P _n	kW	-	-	0.21	
>	Rated speed	n _n	rpm	—	1200	3000	
= 115	Rated torque (1)	M _n	Nm	—	1.94	1.86	
NU	Rated power	Pn	kW	—	0.24	0.58	
> 0	Rated speed	n _n	rpm	1200	3000	6000	
= 23(Rated torque (1)	M _n	Nm	1.88	1.82	1.62	
N	Rated power	Pn	kW	0.24	0.57	1.02	
>	Rated speed	n _n	rpm	3000	6000	_	
= 400	Rated torque (1)	M _n	Nm	1.77	1.58	—	
υ Ν	Rated power	Pn	kW	0.56	0.99	—	
>	Rated speed	n _n	rpm	3500	6000	_	
= 480	Rated torque (1)	M _n	Nm	1.74	1.58	_	
UN.	Rated power	Pn	kW	0.64	0.99	—	
	Peak current	I _{0max}	A	5.8	11.4	22.4	
	Peak torque	M _{0max}	Nm	6.12	6.28	6.36	
	Torque constant	K _{Trms}	Nm / A	1.34	0.71	0.37	
	Voltage constant	K _{Erms}	mVmin	86.3	45.6	23.7	
	Winding resistance Ph-Ph	R25	Ω	21.3	6.02	1.56	
	Winding inductance Ph-Ph	L	mH	66.1	18.4	5.0	
Mec	hanical data						
	Rotor moment of inertia	J	kgcm ²		0.81		
	Number of poles				10		
	Static friction torque	M _R	Nm		0.014		
	Thermal time constant	t _{TH}	min		13		
	Weight (standard)	G	kg		2.44		
	Admissible radial load at shaft end at 8,000 rpm	F _R	N		450		
	Admissible axial load at shaft end at 8,000 rpm	F _A	N		180		

⁽¹⁾ Reference flange of aluminum 254 mm * 254 mm * 6.35 mm

NOTICE

Risk of damage to the motor

Notes for AKM-motors with standstill currents of $I_0 > 6 A_{rms}$

Motors with a standstill current of $I_0 > 6 A_{rms}$ shall **not** be operated with connected Molex connectors.

Cut the Molex connector (5-pole without brake or 8-pole with brake) from the motor and connect the motor with the cable to the servo amplifier. The signal connectors for the resolver signals (10-pole) or the encoder signals (18-pole) can be connected.

•

Technical data		Symbol	Unit	AKM42x		/42x	
				42C	42E	42G	42J
Elec	ctrical data						
	Standstill torque (1)	M ₀	Nm	3.35	3.42	3.53	3.56
	Standstill current	I _{0rms}	A	1.40	2.74	4.80	!
							8.40
	Max. rated mains voltage	U _N	VAC		4	80	
N	Rated speed	n _n	rpm	—	—	—	—
75 V	Rated torque (1)	M _n	Nm	-	_	—	_
□	Rated power	Pn	kW	-	—	—	—
>	Rated speed	n _n	rpm	_	_	_	3000
= 115	Rated torque (1)	M _n	Nm	—	—	—	3.03
"N N	Rated power	Pn	kW	-	—	—	0.95
>	Rated speed	n _n	rpm	-	1800	3500	6000
= 23(Rated torque (1)	M _n	Nm	-	3.12	2.90	2.38
"N N	Rated power	Pn	kW	-	0.59	1.06	1.50
>	Rated speed	n _n	rpm	1500	3500	6000	—
= 400	Rated torque (1)	M _n	Nm	3.10	2.81	2.35	—
N N	Rated power	Pn	kW	0.49	1.03	1.48	—
>	Rated speed	n _n	rpm	2000	4000	6000	—
= 48(Rated torque (1)	M _n	Nm	3.02	2.72	2.35	—
N	Rated power	Pn	kW	0.63	1.14	1.48	—
	Peak current	I _{0max}	A	5.61	11.0	19.2	33.7
	Peak torque	M _{0max}	Nm	11.1	11.3	11.5	11.6
	Torque constant	K _{Trms}	Nm / A	2.40	1.26	0.74	0.43
	Voltage constant	K _{Erms}	mVmin	154	80.9	47.5	27.5
	Winding resistance Ph-Ph	R25	Ω	27.5	7.78	2.51	0.80
	Winding inductance Ph- Ph	L	mH	97.4	26.8	9.2	3.1
Med	Line Line Line Line Line Line Line Line						
	Rotor moment of inertia	J	kgcm²		1	.5	
	Number of poles			10		0	
	Static friction torque	M _R	Nm		0.0)26	
	Thermal time constant	t _{TH}	min		1	7	
	Weight (standard)	G	kg		3.	39	
	Admissible radial load at shaft end at 8,000 rpm	F _R	N		4	50	
	Admissible axial load at shaft end at 8,000 rpm	F _A	N		18	80	

(1) Reference flange of aluminum 254 mm * 254 mm * 6.35 mm

NOTICE
Risk of damage to the motor
Notes for AKM-motors with standstill currents of $I_0 > 6 A_{rms}$
Motors with a standstill current of $I_0 > 6 A_{rms}$ shall not be operated with connected Molex connectors.
Cut the Molex connector (5-pole without brake or 8-pole with brake) from the motor and connect the motor with the cable to the servo amplifier. The signal connectors for the resolver signals (10-pole) or the encoder signals (18-pole) can be connected.

Tec	hnical data	Symbol	Unit	AKM43x		
				43E	43G	43K
Ele	ctrical data					
	Standstill torque (1)	M ₀	Nm	4.70	4.80	4.90
	Standstill current	I _{0rms}	А	2.76	4.87	!
						9.60
	Max. rated mains voltage	U _N	VAC		480	
N	Rated speed	n _n	rpm	—	—	—
75 V	Rated torque ⁽¹⁾	M _n	Nm	—	—	—
	Rated power	Pn	kW	—	—	—
>	Rated speed	n _n	rpm	—	—	2500
= 115	Rated torque ⁽¹⁾	M _n	Nm	—	—	1.08
Ŋ	Rated power	Pn	kW	—	—	1.07
> 0	Rated speed	n _n	rpm	1500	2500	6000
= 23(Rated torque (1)	M _n	Nm	4.24	4.00	2.62
N	Rated power	Pn	kW	0.67	1.05	1.65
> 0	Rated speed	n _n	rpm	2500	5000	—
= 40	Rated torque (1)	M _n	Nm	3.92	3.01	—
N	Rated power	Pn	kW	1.03	1.58	—
> 0	Rated speed	n _n	rpm	3000	6000	—
= 48	Rated torque (1)	M _n	Nm	3.76	2.57	—
N	Rated power	Pn	kW	1.18	1.61	—
	Peak current	I _{0max}	A	11.0	19.5	38.3
	Peak torque	M _{0max}	Nm	15.9	16.1	16.3
	Torque constant	K _{Trms}	Nm / A	1.72	0.99	0.52
	Voltage constant	K _{Erms}	mVmin	111	63.9	33.2
	Winding resistance Ph-Ph	R25	Ω	8.61	2.61	0.74
	Winding inductance Ph-Ph	L	mH	32.6	10.8	2.9
Me	chanical data					
	Rotor moment of inertia	J	kgcm ²		2.1	
	Number of poles				10	
	Static friction torque	M _R	Nm		0.038	

Technical data		Symbol	Unit	AKM43x		
				43E	43G	43K
	Thermal time constant	t _{TH}	min		20	
	Weight (standard)	G	kg		4.35	
	Admissible radial load at shaft end at 8,000 rpm	F _R	Ν		450	
	Admissible axial load at shaft end at 8,000 rpm	F _A	Ν		180	

 $^{(1)}\mbox{Reference}$ flange of aluminum 254 mm * 254 mm * 6.35 mm

NOTICE

Risk of damage to the motor

Notes for AKM-motors with standstill currents of $I_0 > 6 A_{rms}$

Motors with a standstill current of $I_0 > 6 A_{rms}$ shall **not** be operated with connected Molex connectors.

Cut the Molex connector (5-pole without brake or 8-pole with brake) from the motor and connect the motor with the cable to the servo amplifier. The signal connectors for the resolver signals (10-pole) or the encoder signals (18-pole) can be connected.

Technical data		Symbol	Unit		AKM44x	
				44E	44G	44J
Ele	ctrical data				-	
	Standstill torque (1)	M ₀	Nm	5.76	5.88	6.00
	Standstill current	I _{0rms}	А	2.90	5.00	!
						8.80
	Max. rated mains voltage	U _N	VAC		480	
ВС	Rated speed	n _n	rpm	—	—	_
75 V	Rated torque (1)	M _n	Nm	—	—	_
= ∩	Rated power	Pn	kW	—	—	
> 10	Rated speed	n _n	rpm	—	—	_
= 11!	Rated torque (1)	M _n	Nm	—	—	_
N	Rated power	Pn	kW	—	—	_
> 0	Rated speed	n _n	rpm	1200	2000	4000
= 23	Rated torque (1)	M _n	Nm	5.22	4.90	3.84
N N	Rated power	Pn	kW	0.66	1.03	1.31
∧ 0	Rated speed	n _n	rpm	2000	4000	6000
= 40	Rated torque (1)	M _n	Nm	4.80	3.76	2.75
N	Rated power	Pn	kW	1.01	1.57	1.73
> 0	Rated speed	n _n	rpm	2500	5000	6000
= 48	Rated torque (1)	M _n	Nm	4.56	3.19	2.75
N	Rated power	Pn	kW	1.19	1.67	1.73
	Peak current	I _{0max}	А	11.4	20.0	35.2
	Peak torque	M _{0max}	Nm	19.9	20.2	20.4

Tec	hnical data	Symbol	Unit		AKM44x	
				44E	44G	44J
	Torque constant	K _{Trms}	Nm / A	2.04	1.19	0.69
	Voltage constant	K _{Erms}	mVmin	132	76.6	44.2
	Winding resistance Ph-Ph	R25	Ω	8.08	2.80	0.94
	Winding inductance Ph-Ph	L	mH	33.9	11.5	3.8
Mechanical data						
	Rotor moment of inertia	J	kgcm ²		2.7	
	Number of poles				10	
	Static friction torque	M _R	Nm		0.05	
	Thermal time constant	t _{TH}	min		24	
	Weight (standard)	G	kg		5.3	
	Admissible radial load at shaft end at 8,000 rpm	F _R	N		450	
	Admissible axial load at shaft end at 8,000 rpm	F _A	N		180	

 $^{(1)}\mbox{Reference}$ flange of aluminum 254 mm * 254 mm * 6.35 mm

Technical data of the brake:

Technical data	Symbol [unit]	Value
Holding torque at 120 °C	M _{BR} [Nm]	6
Mains voltage	U _{BR} [VDC]	24 ±10%
Electric power	P _{BR} [W]	12.8
Moment of inertia	J _{BR} [kgcm²]	0.068
Release delay time	t _{BRH} [ms]	35
Application delay time	t _{BRL} [ms]	15
Weight of the brake	G _{BR} [kg]	0.63
Typical backlash	[°mech.]	0.37

Connections and cables

Connector	AKM4
Power connection:	4 + 4-pole, round, angular
Motor cable, shielded	4 x 1.5
Motor cable with control leads, shielded	4 x 1.5 + 2 x 0.75
Resolver connection	12-pole, round, angular
Resolver cable, shielded	4 x 2 x 0.25 mm²
Encoder connection (option)	17-pole, round
Encoder cable, shielded	8 x 2 x 0.25 mm²

Fig. 7: Radial forces / axial forces at the shaft endAKM4

10.5 AKM5

Tec	hnical data	Symbol	Unit		AKM51x	
				51E	51G	51K
Ele	ctrical data					
	Standstill torque (1)	M ₀	Nm	4.70	4.75	4.90
	Standstill current	I _{0rms}	А	2.75	4.84	9.40
	Max. rated mains voltage	U _N	VAC		480	
ВС	Rated speed	n _n	rpm	—	—	—
75 V	Rated torque (1)	M _n	Nm	—	_	—
=	Rated power	Pn	kW	—	—	—
>	Rated speed	n _n	rpm	—	_	2500
= 115	Rated torque (1)	M _n	Nm	—	_	4.15
N	Rated power	Pn	kW	_	_	1.09
> 0	Rated speed	n _n	rpm	1200	2500	5500
= 23	Rated torque (1)	M _n	Nm	4.41	4.02	2.35
N	Rated power	Pn	kW	0.55	1.05	1.35
> 0	Rated speed	n _n	rpm	2500	5000	—
= 40	Rated torque (1)	M _n	Nm	3.98	2.62	—
N	Rated power	Pn	kW	1.04	1.37	—
> 0	Rated speed	n _n	rpm	3000	6000	—
= 48	Rated torque (1)	M _n	Nm	3.80	1.94	—
N	Rated power	Pn	kW	1.19	1.22	—
	Peak current	I _{0max}	A	8.24	14.5	28.3
	Peak torque	M _{0max}	Nm	11.6	11.7	12.0
	Torque constant	K _{Trms}	Nm / A	1.72	0.99	0.52
	Voltage constant	K _{Erms}	mVmin	110	63.6	33.5
	Winding resistance Ph-Ph	R25	Ω	8.98	2.75	0.75
	Winding inductance Ph-Ph	L	mH	36.6	12.1	3.40

Tec	hnical data	Symbol	Unit		AKM51x	
				51E	51G	51K
Mec	hanical data					
	Rotor moment of inertia	J	kgcm²		3.4	
	Number of poles				10	
	Static friction torque	M _R	Nm		0.022	
	Thermal time constant	t _{TH}	min		20	
	Weight (standard)	G	kg		4.2	
	Admissible radial load at shaft end at 8,000 rpm	F _R	Ν		450	
	Admissible axial load at shaft end at 8,000 rpm	F _A	N		180	

 $^{(1)}\mbox{Reference}$ flange of aluminum 305 mm * 305 mm * 12.7 mm

Technical data		Symbol	Unit		AKN	/152x	
				52E	52G	52K	52M
Elec	ctrical data					-	
	Standstill torque (1)	M ₀	Nm	8.34	4.43	8.60	8.60
	Standstill current	I _{0rms}	А	2.99	4.72	9.3	13.1
	Max. rated mains voltage	U _N	VAC		48	80	
DC	Rated speed	n _n	rpm	—	—	—	—
75 V	Rated torque (1)	M _n	Nm	—	—	—	—
= 0	Rated power	Pn	kW	—	—	—	—
> 2	Rated speed	n _n	rpm	—	—	—	—
= 115	Rated torque (1)	M _n	Nm	—	—	—	—
N	Rated power	Pn	kW	—	—	—	—
> 0	Rated speed	n _n	rpm	—	1500	3000	4500
= 23(Rated torque (1)	M _n	Nm	—	7.69	6.80	5.20
N	Rated power	Pn	kW	—	1.21	2.14	2.45
> 0	Rated speed	n _n	rpm	1500	2500	5500	—
= 40(Rated torque ⁽¹⁾	M _n	Nm	7.61	7.06	3.90	—
N	Rated power	Pn	kW	1.20	1.85	2.25	—
> 0	Rated speed	n _n	rpm	2000	3000	6000	—
= 48(Rated torque ⁽¹⁾	M _n	Nm	7.28	6.66	3.25	—
N	Rated power	Pn	kW	1.52	2.09	2.04	—
	Peak current	I _{0max}	A	9.00	14.2	27.8	39.4
	Peak torque	M _{0max}	Nm	21.3	21.5	21.9	21.9
	Torque constant	K _{Trms}	Nm / A	2.79	1.79	0.93	0.66
	Voltage constant	K _{Erms}	mVmin	179	115	60.1	42.4
	Winding resistance Ph-Ph	R25	Ω	8.96	3.70	0.96	0.49
	Winding inductance Ph- Ph	L	mH	44.7	18.5	5.00	2.50
Med	hanical data						
	Rotor moment of inertia	J	kgcm²		6	.2	
	Number of poles				1	0	
	Static friction torque	M _R	Nm		0.	04	

Technical data		Symbol	Unit	AKM52x			
				52E 52G 52K			52M
	Thermal time constant	t _{TH}	min		2	4	
	Weight (standard)	G	kg	5.8			
	Adm. radial load at shaft end at 8,000 rpm	F _R	Ν	450			
	Adm. radial load at shaft end at 8,000 rpm	F _A	Ν		18	30	

⁽¹⁾ Reference flange of aluminum 305 mm * 305 mm * 12.7 mm

Technical data		Symbol	Unit		AKM53x			
				53G	53K	53M	53P	
Ele	ctrical data							
	Standstill torque (1)	M ₀	Nm	11.4	11.6	11.4	11.4	
	Standstill current	I _{0rms}	A	4.77	9.4	13.4	19.1	
	Max. rated mains voltage	U _N	VAC		48	80		
B	Rated speed	n _n	rpm	—	—	—	—	
75 V	Rated torque (1)	M _n	Nm	—	—	—	—	
= 0	Rated power	Pn	kW	—	—	—	—	
>	Rated speed	n _n	rpm	—	—	—	—	
= 115	Rated torque (1)	M _n	Nm	—	—	—	—	
Ŋ	Rated power	Pn	kW	—	—	—	—	
> 0	Rated speed	n _n	rpm	1000	2000	3000	5000	
= 23(Rated torque (1)	M _n	Nm	10.7	10.1	8.72	5.86	
N N	Rated power	Pn	kW	1.12	2.12	2.74	3.08	
>	Rated speed	n _n	rpm	2000	4000	—	—	
= 40(Rated torque (1)	M _n	Nm	9.85	7.65	—	—	
N	Rated power	Pn	kW	2.06	3.20	—	—	
> 0	Rated speed	n _n	rpm	2400	4500	—	—	
= 48	Rated torque (1)	M _n	Nm	9.50	6.85	—	—	
N	Rated power	Pn	kW	2.39	3.23	—	—	
	Peak current	I _{0max}	A	14.3	28.1	40.3	57.4	
	Peak torque	M_{0max}	Nm	29.7	30.1	29.8	29.8	
	Torque constant	K _{Trms}	Nm / A	2.39	1.24	0.85	0.60	
	Voltage constant	K _{Erms}	mVmin	154	79.8	54.7	38.4	
	Winding resistance Ph-Ph	R25	Ω	3.97	1.06	0.51	0.28	
	Winding inductance Ph- Ph	L	mH	21.3	5.70	2.70	1.30	
Me	chanical data							
	Rotor moment of inertia	J	kgcm ²		9	.1		
	Number of poles			10				
	Static friction torque	M _R	Nm		0.0)58		
	Thermal time constant	t _{TH}	min		2	.8		
	Weight (standard)	G	kg		7	.4		
	Adm. radial load at shaft end at 8,000 rpm	F _R	N	450				

Technical data		Symbol	Unit	AKM53x			
				53G	53K	53M	53P
	Adm. radial load at shaft end at 8,000 rpm	F _A	N	180			

 $^{(1)}$ Reference flange of aluminum 305 mm * 305 mm * 12.7 mm

Technical data		Symbol	Unit		AKM54x		
				54G	54K	54L	54N
Elec	trical data			•			
	Standstill torque (1)	M ₀	Nm	14.3	14.4	14.1	14.1
	Standstill current	I _{0rms}	А	5.0	9.7	12.5	17.8
	Max. rated mains voltage	U _N	VAC		48	80	
рс	Rated speed	n _n	rpm	—	—	—	—
75 V	Rated torque (1)	M _n	Nm	—	_	—	-
" □	Rated power	Pn	kW	—	_	—	_
١٧	Rated speed	n _n	rpm	—	_	—	—
= 115	Rated torque (1)	M _n	Nm	—	—	—	—
Ŋ	Rated power	Pn	kW	—	_	—	_
>	Rated speed	n _n	rpm	—	1800	2500	3500
= 23(Rated torque (1)	M _n	Nm	—	12.7	11.5	9.85
ΝN	Rated power	P _n	kW	—	2.39	3.00	3.61
Λ٥	Rated speed	n _n	rpm	1500	3500	4500	—
= 40	Rated torque (1)	M _n	Nm	12.9	10.0	8.13	—
NN	Rated power	Pn	kW	2.03	3.68	3.83	—
∧ 0	Rated speed	n _n	rpm	2000	4000	—	
= 48	Rated torque (1)	M _n	Nm	12.3	9.25	—	—
N	Rated power	Pn	kW	2.57	3.87	—	—
	Peak current	I _{0max}	А	14.9	29.2	37.5	53.4
	Peak torque	M _{0max}	Nm	37.8	38.4	37.5	37.6
	Torque constant	K _{Trms}	Nm / A	2.88	1.50	1.13	0.80
	Voltage constant	K _{Erms}	mVmin	185	96.6	72.9	51.3
	Winding resistance Ph-Ph	R25	Ω	4.08	1.08	0.65	0.33
	Winding inductance Ph- Ph	L	mH	22.9	6.20	3.50	1.80
Mec	hanical data						
	Rotor moment of inertia	J	kgcm²		1	2	
	Number of poles				1	0	
	Static friction torque	M _R	Nm		0.0)77	
	Thermal time constant	t _{TH}	min		3	51	
	Weight (standard)	G	kg		9	9	
	Adm. radial load at shaft end at 8,000 rpm	F _R	N		4	50	
	Adm. radial load at shaft end at 8,000 rpm	F _A	N		18	80	

Technical data of the brake:

Technical data	Symbol [unit]	Value
Holding torque at 120 °C	M _{BR} [Nm]	14.5
Mains voltage	U _{BR} [VDC]	24 ±10%
Electric power	P _{BR} [W]	19.5
Moment of inertia	J _{BR} [kgcm²]	0.173
Release delay time	t _{BRH} [ms]	80
Application delay time	t _{BRL} [ms]	15
Weight of the brake	G _{BR} [kg]	1.1
Typical backlash	[°mech.]	0.31

Connections and cables

Connector	AKM5			
Power connection:	4 + 4-pole, round, angular			
Motor cable, shielded	4 x 1.5	4 x 2.5		
Motor cable with control leads, shielded	4 x 1.5 + 2 x 0.75	4 x 2.5 + 2 x 1		
Resolver connection	12-pole, round, angular			
Resolver cable, shielded	4 x 2 x 0.25 mm ²			
Encoder connection (option)	17-pole, round			
Encoder cable, shielded	8 x 2 x 0.25 mm²			

Radial forces / axial forces at the shaft end

Fig. 8: Radial forces / axial forces at the shaft endAKM5

10.6 AKM6

Technical data		Symbol	Unit	AKM62x			
				62G	62K	62M	62P
Electrical data							
	Standstill torque (1)	M ₀	Nm	11.9	12.2	12.2	12.3
	Standstill current	I _{0rms}	А	4.9	9.6	13.4	18.8
Max. rated mains voltage U _N VAC		230	-480				

Tec	hnical data	Symbol	Unit		AKM62x				
				62G	62K	62M	62P		
Ы	Rated speed	n _n	rpm	-	—	—	—		
75 V	Rated torque (1)	M _n	Nm	—	—	—	—		
 	Rated power	P _n	kW	-	—	—	—		
>	Rated speed	n _n	rpm	-	—	—	—		
= 115	Rated torque (1)	M _n	Nm	—	—	—	—		
N	Rated power	Pn	kW	-	—	—	—		
> 0	Rated speed	n _n	rpm	-	2000	3000	4500		
= 23(Rated torque (1)	M _n	Nm	-	10.4	9.50	8.10		
N N	Rated power	Pn	kW	-	2.18	2.98	3.82		
>	Rated speed	n _n	rpm	1800	3500	6000	—		
= 40(Rated torque (1)	M _n	Nm	10.4	9.00	5.70	—		
n N	Rated power	Pn	kW	1.96	3.30	3.58	—		
>	Rated speed	n _n	rpm	2000	4500	6000	—		
= 48(Rated torque (1)	M _n	Nm	10.2	8.00	5.70	—		
N N	Rated power	Pn	kW	2.14	3.77	3.58	—		
	Peak current	I _{0max}	A	14.6	28.7	40.3	56.5		
	Peak torque	M _{0max}	Nm	29.8	30.1	30.2	30.4		
	Torque constant	K _{Trms}	Nm / A	2.47	1.28	0.91	0.66		
	Voltage constant	K _{Erms}	mVmin	159	82.1	58.8	42.2		
	Winding resistance Ph-Ph	R25	Ω	4.13	1.08	0.57	0.30		
	Winding inductance Ph- Ph	L	mH	31.7	8.5	4.4	2.2		
Mec	chanical data			-			-		
	Rotor moment of inertia	J	kgcm ²		1	7			
	Number of poles				1	0			
	Static friction torque	M _R	Nm		0.	05			
	Thermal time constant	t _{TH}	min	20					
	Weight (standard)	G	kg		8.9				
	Adm. radial load at shaft end at 8,000 rpm	F _R	N		77	70			
	Adm. radial load at shaft end at 8,000 rpm	F _A	N		28	80			

 $^{(1)}\mbox{Reference}$ flange of aluminum 254 mm * 254 mm * 6.35 mm

Tec	hnical data	Symbol	Unit			AKM63x		
				63G	63K	63M	63N	63S
Elec	Electrical data							
	<u>Standstill</u> torque ⁽¹⁾	M ₀	Nm	16.5	16.8	17.0	17.0	16.7
	<u>Standstill</u> <u>current</u>	I _{0rms}	A	4.5	9.9	13.8	17.4	22.4
	Max. rated mains voltage	U _N	VAC			230-480		

Technical data		Symbol	Unit	AKM63x				
				63G	63K	63M	63N	63S
Ŋ	Rated speed	n _n	rpm	-	—	—	_	—
= 75 V _C	Rated torque	M _n	Nm	-	—	—		—
	Rated power	Pn	kW	_	—	—		—
>	Rated speed	n _n	rpm	—	—	—	—	—
۱ = 115	Rated torque	M _n	Nm	-	—	—	_	—
5	Rated power	Pn	kW	-	—	-	—	—
>	Rated speed	n _n	rpm	-	1500	2000	3000	4000
v = 230	Rated torque	M _n	Nm	-	14.9	14.3	13.0	11.0
5	Rated power	Pn	kW	-	2.34	2.99	4.08	4.66
>	Rated speed	n _n	rpm	1200	3000	4000	5000	—
v = 400	Rated torque	M _n	Nm	14.9	12.9	11.3	9.60	—
5	Rated power	Pn	kW	1.87	4.05	4.73	5.03	—
>	Rated speed	n _n	rpm	1500	3500	4500	6000	—
N = 480	Rated torque	M _n	Nm	14.6	12.0	10.5	7.00	—
5	Rated power	Pn	kW	2.29	4.40	4.95	4.40	—
	Peak current	I _{0max}	А	13.4	29.7	41.4	52.2	50.0
	Peak torque	M _{0max}	Nm	41.8	42.6	43.0	43.0	36.0
	<u>Torque</u> <u>constant</u>	K _{Trms}	Nm / A	3.70	1.71	1.24	0.98	0.744
	<u>Voltage</u> <u>constant</u>	K _{Erms}	mVmin	238	110	79.9	63.3	48.3
	Winding resist- ance Ph-Ph	R25	Ω	5.50	1.14	0.61	0.39	0.25
	Winding induc- tance Ph-Ph	L	mH	43.5	9.3	4.9	3.1	1.8
Med	chanical data		ł					
	<u>Rotor</u> <u>moment of</u> <u>inertia</u>	J	kgcm²			24		
	Number of poles					10		
	Static friction torque	M _R	Nm			0.1		
	<u>Thermal time</u> <u>constant</u>	t _{TH}	min			25		
	Weight (standard)	G	kg			11.1		
	Adm. radial load at shaft end at 8,000 rpm	F _R	N			770		
	Adm. radial load at shaft	F _A	N			280		

Tec	hnical data	Symbol	Unit	AKM63x				
				63G	63K	63M	63N	63S
	end at 8,000 rpm							

⁽¹⁾Reference flange of aluminum 254 mm * 254 mm * 6.35 mm

Technical data		Symbol	Unit		AKN	/64x	
				64K	64L	64P	64S
Elec	ctrical data						•
	Standstill torque (1)	M ₀	Nm	20.8	21.0	20.4	20.6
	Standstill current	I _{0rms}	A	9.2	12.8	18.6	20.7
	Max. rated mains voltage	U _N	VAC		230	-480	•
Ы	Rated speed	n _n	rpm	—	—	—	—
75 V	Rated torque (1)	M _n	Nm	—		—	—
= 	Rated power	Pn	kW	-	_	—	—
>	Rated speed	n _n	rpm	—		—	—
= 115	Rated torque (1)	M _n	Nm	—		—	—
"N N	Rated power	Pn	kW	—		—	—
>	Rated speed	n _n	rpm	1200	1500	2500	3000
= 230	Rated torque (1)	M _n	Nm	18.8	18.4	16.0	13.0
nN N	Rated power	P _n	kW	2.36	2.89	4.19	4.79
<u>ک</u> (Rated speed	n _n	rpm	2000	3000	4500	—
= 40(Rated torque (1)	M _n	Nm	17.2	15.6	11.9	—
ΝN	Rated power	Pn	kW	3.60	4.90	5.61	—
> (Rated speed	n _n	rpm	2500	3500	5500	_
= 48(Rated torque (1)	M _n	Nm	16.3	14.4	9.00	—
"N N	Rated power	Pn	kW	4.27	5.28	5.18	—
	Peak current	I _{0max}	A	27.5	38.4	55.9	52.2
	Peak torque	M _{0max}	Nm	53.5	54.1	52.9	57.0
	Torque constant	K _{Trms}	Nm / A	2.28	1.66	1.10	0.916
	Voltage constant	K _{Erms}	mVmin	147	107	71.0	64.4
	Winding resistance Ph-Ph	R25	Ω	1.41	0.75	0.36	0.29
	Winding inductance Ph- Ph	L	mH	11.8	6.2	2.8	2.3
Med	hanical data						1
	Rotor moment of inertia	J	kgcm ²		3	2	
	Number of poles				1	0	
	Static friction torque	M _R	Nm		0.	15	
	Thermal time constant	t _{TH}	min		3	0	
	Weight (standard)	G	kg		13	3.3	
	Adm. radial load at shaft end at 8,000 rpm	F _R	N		7	70	
	Adm. radial load at shaft end at 8,000 rpm	F _A	N		28	80	

⁽¹⁾Reference flange of aluminum 254 mm * 254 mm * 6.35 mm

Technical data		Symbol	Unit		AKM65x			
				65K	65N	65N		
Ele	ctrical data		-	-				
	Standstill torque (1)	M ₀	Nm	24.8	25.0	24.3		
	Standstill current	I _{0rms}	A	9.8	13.6	17.8		
	Max. rated mains voltage	U _N	VAC	230-480				
Ы	Rated speed	n _n	rpm	—	—	—		
75 V	Rated torque (1)	M _n	Nm	—	—	—		
	Rated power	P _n	kW	—	—	_		
>	Rated speed	n _n	rpm	—	—	_		
= 115	Rated torque (1)	M _n	Nm	—	—	_		
"N N	Rated power	Pn	kW	—	—	_		
>	Rated speed	n _n	rpm	1000	1500	2000		
= 230	Rated torque (1)	M _n	Nm	22.8	21.9	19.8		
Π N	Rated power	Pn	kW	2.39	3.44	4.15		
>	Rated speed	n _n	rpm	2000	2500	3500		
= 400	Rated torque (1)	M _n	Nm	20.2	19.2	16.0		
N N	Rated power	Pn	kW	4.23	5.03	5.86		
>	Rated speed	n _n	rpm	2200	3000	4000		
= 48(Rated torque (1)	M _n	Nm	19.7	18.1	14.7		
N	Rated power	Pn	kW	4.54	5.69	6.16		
	Peak current	I _{0max}	A	29.4	40.9	53.3		
	Peak torque	M _{0max}	Nm	64.5	65.2	63.7		
	Torque constant	K _{Trms}	Nm / A	2.54	1.85	1.38		
	Voltage constant	K _{Erms}	mVmin	164	119	88.8		
	Winding resistance Ph-Ph	R25	Ω	1.35	0.73	0.43		
	Winding inductance Ph-Ph	L	mH	11.4	6.1	3.4		
Mee	chanical data							
	Rotor moment of inertia	J	kgcm ²		40			
	Number of poles				10			
	Static friction torque	M _R	Nm		0.2			
	Thermal time constant	t _{TH}	min		35			
	Weight (standard)	G	kg		15.4			
	Adm. radial load at shaft end at 8,000 rpm	F _R	N		770			
	Adm. radial load at shaft end at 8,000 rpm	F _A	N		280			

⁽¹⁾ Reference flange of aluminum 457 mm * 457 mm * 12.7 mm

Technical data of the brake:

Technical data	Symbol [unit]	Value
Holding torque at 120 °C	M _{BR} [Nm]	25
Mains voltage	U _{BR} [VDC]	24 ±10%
Electric power	P _{BR} [W]	25.7
Moment of inertia	J _{BR} [kgcm ²]	0.61

Technical data	Symbol [unit]	Value
Release delay time	t _{BRH} [ms]	105
Application delay time	t _{BRL} [ms]	20
Weight of the brake	G _{BR} [kg]	2
Typical backlash	[°mech.]	0.24

Connections and cables

Connector	АКМ6
Power connection:	4 + 4-pole, round, angular
Motor cable, shielded	4 x 2.5
Motor cable with control leads, shielded	4 x 2.5 + 2 x 1
Resolver connection	12-pole, round, angular
Resolver cable, shielded	4 x 2 x 0.25 mm²
Encoder connection (option)	17-pole, round
Encoder cable, shielded	8 x 2 x 0.25 mm²

Radial forces / axial forces at the shaft end

Fig. 9: Radial forces / axial forces at the shaft endAKM6

10.7 AKM7

Tec	hnical data	Symbol	Unit		AKM72x	
				72K	72M	72P
Electrical data						
	Standstill torque (1)	M ₀	Nm	29.7	30.0	29.4
	Standstill current	I _{0rms}	А	9.3	13.0	18.7
	Max. rated mains voltage	U _N	VAC		480	
DC	Rated speed	n _n	rpm	—	—	
75 V	Rated torque (1)	M _n	Nm	—	—	
=	Rated power	Pn	kW	—	—	—
5 V	Rated speed	n _n	rpm	—	—	_
U _N = 115	Rated torque ⁽¹⁾	M _n	Nm	_	_	_

10

Tec	hnical data	Symbol	Unit	AKM72x		
				72K	72M	72P
	Rated power	Pn	kW	—	—	—
> 0	Rated speed	n _n	rpm	—	—	1800
= 23	Rated torque (1)	M _n	Nm	—	—	23.8
N	Rated power	Pn	kW	—	—	4.49
> 0	Rated speed	n _n	rpm	1500	2000	3000
= 40	Rated torque (1)	M _n	Nm	25.1	23.6	20.1
N	Rated power	Pn	kW	3.94	4.94	6.31
> 0	Rated speed	n _n	rpm	1800	2500	3500
= 48(Rated torque (1)	M _n	Nm	24.0	22.1	18.2
N N	Rated power	Pn	kW	4.52	5.79	6.67
	Peak current	I _{0max}	A	27.8	38.9	56.1
	Peak torque	M _{0max}	Nm	79.2	79.7	78.5
	Torque constant	K _{Trms}	Nm / A	3.23	2.33	1.58
	Voltage constant	K _{Erms}	mVmin	208	150	102
	Winding resistance Ph-Ph	R25	Ω	1.36	0.69	0.35
	Winding inductance Ph-Ph	L	mH	20.7	10.8	5.0
Me	chanical data				-	
	Rotor moment of inertia	J	kgcm ²		65	
	Number of poles				10	
	Static friction torque	M _R	Nm		0.16	
	Thermal time constant	t _{TH}	min	46		
	Weight (standard)	G	kg	19.7		
	Admissible radial load at shaft end at 8,000 rpm	F _R	N		1300	
	Admissible axial load at shaft end at 8,000 rpm	F _A	N		5000	

⁽¹⁾Reference flange of aluminum 457 mm * 457 mm * 12.7 mm

Tec	hnical data	Symbol	Unit	AKN	173x
				73M	73P
Elec	ctrical data				
	Standstill torque (1)	M ₀	Nm	53.0	52.5
	Standstill current	I _{0rms}	А	12.9	18.5
	Max. rated mains voltage	U _N	VAC	480	
DC	Rated speed	n _n	rpm	—	—
75 V	Rated torque ⁽¹⁾	M _n	Nm	—	—
=	Rated power	Pn	kW	—	—
> 2	Rated speed	n _n	rpm	—	—
= 115	Rated torque (1)	M _n	Nm	—	—
N	Rated power	Pn	kW	—	—
> 0	Rated speed	n _n	rpm	—	1300
= 23	Rated torque ⁽¹⁾	M _n	Nm	—	34.7
N	Rated power	Pn	kW	—	4.72

Tec	hnical data	Symbol	Unit	AKN	//73x
				73M	73P
> 0	Rated speed	n _n	rpm	1500	2400
= 40	Rated torque ⁽¹⁾	M _n	Nm	33.8	28.5
N N	Rated power	Pn	kW	5.31	7.16
> 0	Rated speed	n _n	rpm	1800	2800
= 48	Rated torque ⁽¹⁾	M _n	Nm	32.1	26.3
N	Rated power	Pn	kW	6.05	7.71
	Peak current	I _{0max}	A	40.8	58.6
	Peak torque	M _{0max}	Nm	113	111
	Torque constant	K _{Trms}	Nm / A	3.10	2.13
	Voltage constant	K _{Erms}	mVmin	200	137
	Winding resistance Ph-Ph	R25	Ω	0.76	0.38
	Winding inductance Ph-Ph	L	mH	12.4	5.9
Mee	chanical data				
	Rotor moment of inertia	J	kgcm ²	g)2
	Number of poles			10	
	Static friction torque	M _R	Nm	0.	24
	Thermal time constant	t _{TH}	min	5	53
	Weight (standard)	G	kg	26.7	
	Admissible radial load at shaft end at 8,000 rpm	F _R	N	1300	
	Admissible axial load at shaft end at 8,000 rpm	F _A	N	5	00

 $^{(1)}\mbox{Reference}$ flange of aluminum 457 mm * 457 mm * 12.7 mm

Tec	hnical data	Symbol	Unit	AKN	174x
				74L	74P
Ele	ctrical data				
	Standstill torque (1)	M ₀	Nm	53.0	52.5
	Standstill current	I _{0rms}	А	12.9	18.5
	Max. rated mains voltage	U _N	VAC	48	30
В	Rated speed	n _n	rpm	—	—
75 V	Rated torque ⁽¹⁾	M _n	Nm	—	—
= 0	Rated power	Pn	kW	_	_
> 2	Rated speed	n _n	rpm	—	—
= 11!	Rated torque ⁽¹⁾	M _n	Nm	—	—
N	Rated power	Pn	kW	—	—
> 0	Rated speed	n _n	rpm	—	—
= 23	Rated torque ⁽¹⁾	M _n	Nm	—	—
N	Rated power	Pn	kW	—	—
∧ 0	Rated speed	n _n	rpm	1200	1800
= 40	Rated torque ⁽¹⁾	M _n	Nm	43.5	39.6
N	Rated power	Pn	kW	5.47	7.46

Tec	hnical data	Symbol	Unit	AKN	174x
				74L	74P
> 0	Rated speed	n _n	rpm	1400	2000
= 48	Rated torque ⁽¹⁾	M _n	Nm	41.5	35.9
N	Rated power	Pn	kW	6.08	7.52
	Peak current	I _{0max}	A	38.7	55.5
	Peak torque	M _{0max}	Nm	143	142
	Torque constant	K _{Trms}	Nm / A	4.14	2.84
	Voltage constant	K _{Erms}	mVmin	266	183
	Winding resistance Ph-Ph	R25	Ω	0.93	0.47
	Winding inductance Ph-Ph	L	mH	16.4 7.7	
Mee	chanical data				
	Rotor moment of inertia	J	kgcm²	120	
	Number of poles			10	
	Static friction torque	M _R	Nm	0.33	
	Thermal time constant	t _{TH}	min	60	
	Weight (standard)	G	kg	33.6	
	Admissible radial load at shaft end at 8,000 rpm	F _R	N	1300	
	Admissible axial load at shaft end at 8,000 rpm	F _A	N	500	

⁽¹⁾Reference flange of aluminum 457 mm * 457 mm * 12.7 mm

Technical data of the brake:

Technical data	Symbol [unit]	Value
Holding torque at 120 °C	M _{BR} [Nm]	53
Mains voltage	U _{BR} [VDC]	24 ±10%
Electric power	P _{BR} [W]	36.5
Moment of inertia	J _{BR} [kgcm²]	1.64
Release delay time	t _{BRH} [ms]	110
Application delay time	t _{BRL} [ms]	35
Weight of the brake	G _{BR} [kg]	2.1
Typical backlash	[°mech.]	0.2

Connections and cables

Connector	АКМ7
Power connection:	4 + 4-pole, round, angular
Motor cable, shielded	4 x 2.5
Motor cable with control leads, shielded	4 x 2.5 + 2 x 1
Resolver connection	12-pole, round, angular
Resolver cable, shielded	4 x 2 x 0.25 mm²
Encoder connection (option)	17-pole, round
Encoder cable, shielded	8 x 2 x 0.25 mm²

Radial forces / axial forces at the shaft end

Fig. 10: Radial forces / axial forces at the shaft endAKM7

10

1 Connection Examples for AKMmotors

This chapter describes examples for the connection of AKM-motors to a SIEB & MEYER CNC 8x.00.

The following types of connectors exist for AKM-motors:

- screw connector IP65 (connector type E)
- Molex connector (connector type M)
- screw connector IP65 (connector type E)

The connector type can be read out at the motor designation. Examples:

- AKM23D-ANENEM00 → connector type E
- AKM23D-ANMNEM00 \rightarrow connector type M
- ► AKM23D-ANBNEM00 → connector type B
- ► AKM23D-ANCNEM00 \rightarrow connector type C

11.1 Operation of the Terminal Connectors

SIEB & MEYER uses terminal blocks by Phoenix Contact (<u>www.phoenixcontact.com</u>).

In this manual you find the following supplementary notes for connection via terminal blocks:

- Phoenix Contact name of the terminal block (e.g. "MC", "PC4")
- min. conductor cross-section of the terminals according to the rated current of the SIEB & MEYER device
- max. conductor cross-section according to the specification of the manufacturer Phoenix Contact
- max. tigthening torque of the screws for screw terminals according to the specification of the manufacturer Phoenix Contact

11.1.1 Screw Terminals

Terminal connectors with screw connection can be operated intuitively and offer reliable protection against unwanted loosening of the screw connection.

- To fix a conductor in a clamp, loosen the screw connection, insert the conductor into the clamp and close the screw conection.
- To unplug the connector from the clamp, loosen the screw connection.

11.1.2 Push-in Technology

Terminals using the push-in connection technology (PIT) work on the pressure spring principle:

The contact spring presses the cable against the conducting copper bar. The special spring profile allows direct and tool-free wiring of solid and stranded cables previously assembled with ferrule or compressed conductor ends.

- When the cable is inserted into the clamping unit the spring opens automatically.
- To open the clamp and loosen the cable use a screw driver.

11.2 Connector Type E

Connector on the MD84		Function	Connector on the	Cables	SIEB & MEYER order number for connector set	
			Similar motor		35512204	35512211
X26A	15-male submin D connector	Resolver connection	12-pole resolver connector	X26A	x	
X40	9-male submin D connector	Commutation meas- uring system	17-pole encoder	X40A		x
X64	2-pole Power-Combicon connector	Thermal contact	connector			
X63	4-pole Power-Combicon connector	Machine connection of MD84	6-pole	X63A	x	x

Tab. 2: AKM-motors with screw connector IP65 (connector type E)

11.2.1 X26A – Resolver (Connector Type E)

Connecting cable for resolvers

- shielded round cable
- twisted-pair
- ▶ 15-pole male submin D connector ↔ 12-pole female resolver connector
- The cable shield is connected to the busbar.
- The maximum tigthening torque for bolts at submin D connectors is 0.7 Nm.

11

Pin assignment on the servo amplifier / motor

- ▶ 15-pole female submin D connector ↔ 12-pole female resolver connector (connector type E)
- view looking into female connector and round connector

MD84			AKM-motor				
15-pole female submin D con.	Pin	I/O	Designation	Description	Designation	Pin	12-pole male resolver con.
	1	I/O	0 V	GND	0 V		
	2	I	S1	Sine	S1	1	0 ⁰ 0000000000000000000000000000000000
	3	0	0 V		0 V		0 0 0 6 0
00	4	I	S4	Cosine	S4	3	
00	5	0	0 V		0 V		•
	6	0	R2	Rotor	R2	6	•
	7	I	Thermal contact		Thermal contact	7	•
	8	0	0 V		0 V		•
	9	I	S3	Sine	S3	2	
	10	0					•
	11	I	S2	Cosine	S2	4	•
	12	0					•
	13	0	R1	Rotor	R1	5	•
	14	0	0 V		0 V		
	15	0	+24 V	Voltage supply	+24 V	8	

In order to ensure the proper functioning of the device, consider the following information.

Rotary motors (thermal contact)

If no thermal contact is connected at rotary motors, you must connect pin 1 and pin 2 of connector X64 at the servo amplifier by a wire strap!

Rotary motors: resolvers and limit switches

If no linear measuring systems are required, machines driven by rotary AC motors can use the resolver integrated in the motor as measuring system.

The resolver provides 4,096 pulses per motor revolution. This value is entered in the parameter editor and merged with the entered spindle pitch.

If machines are driven by rotary AC motors and equipped with linear measuring systems connect the resolvers to the connectors 26A and the measuring systems via X27. The signals of the measuring system **must** have TTL level!

11.2.2 X40A – Commutation Measuring System (Connector Type E)

Connecting cable

- twisted-pair
- P-pole male submin D connector ↔17-pole female encoder connector
- The cable shield is connected to the busbar.
- The maximum tigthening torque for bolts at submin D connectors is 0.7 Nm.

Pin assignment on the servo amplifier / motor

- ▶ 9-pole female submin D connector ↔ 17-pole encoder connector
- view looking into female connector / round connector

MD84					AKM-motor		
9-pole fem. submin D con.	Pin	I/O Designation		Description	Designation	Pin	17-pole encoder con.
	1	Ι	Ua1	Pulses 0°	0	10	
	2	Ι	Ua1 inv.	Pulses 0° inv.	A inv.	11	U U U U
	3	I	Ua0	Zero pulse	Z	14	OTTO
	4	Ι	Ua0 inv.	Zero pulse inv.	Z inv.	15	065
0 9	5	I/O	GND	Ground	GND	3	
	6	Ι	Ua2	Pulses 90°	В	12	
	7	I	Ua2 in.	Inverted pulses 90°	B inv.	13	
	8	0	+5 V	+5 V measuring system	VCC	1	
	9	I	UaS	Dirt signal		n.c.	

Pin assignment X64

- 2-pole mini Combicon connector at separate line at cable X40A (MD84)
 - Notes for terminal connections (MD84):
 - MC (Phoenix)
 - max. cross-section (solid/stranded cables) = 1.5 mm²
 - max. tightening torque = 0.25 Nm
 - 17-pole male encoder connector (motor)

MD84			AKM-motor		
2-pole male Mini Combicon con.		Description	Pin	17-pole encoder con.	
	1	+24 V for thermal contact	2		
	2	Thermal contact of motor	17		

11.2.3 X63A – Motor Connection MD84 (Connector Type E)

🚹 DANGER

High voltages at the motor connectors

High voltages occur at the motor connectors during the operation of a servo amplifier/frequency converter.

Never operate servo amplifiers/frequency converters without connected plugs. Otherwise, you may seriously be injured when touching the contacts at the motor connectors unintentionally.

Connecting cable

- shielded round cable
- ► 4-pole Power Combicon connector ↔ 6-pole female motor connector
- The cable shield is connected to the busbar.

Pin assignment on the servo amplifier / motor

- The cable shield is connected to the connector shell and to the busbar.
- ► 6-pole motor connector
- 4-pole Power Combicon connector (MD84) Consider the notes for terminal connections, <u>section 12.A "Notes for Terminal</u> <u>Connections", page 85</u>.

ME)84		A	KM-motor
4-pole Power Combicon con.	Connector	Designation		6-pole motor connector
	Busbar at the chassis	Shield	Housing	()
	U	Motor phase U	1	
	V	Motor phase V	5	
	W	Motor phase W	2	
	4	Ground the motor housing in the machine	3	
	Brake+	X30 pin 5 (connect via relay)	4	
	Brake-	GND	6	

11.2.4 Connection Diagrams (Connector Type E)

Fig. 11: Connection diagram for AKM-motors with resolver (connector type E)

Fig. 12: Connection diagram for AKM-motors with incremental encoder (connector type E)

11.3 Connector Type M

Connec	ctor on the MD84	Function	Connector on the SMM motor	Cables	
X26A	15-male submin D connector	Resolver connection	10-pole Molex connector	X26C	
X40	9-male submin D connector	Commutation measuring system	18 pole Moley connector	X40B	
X64	2-pole Power-Combicon connector	Thermal contact		7400	
X63	4-pole Power-Combicon connector	Machine connection of MD84	5-pole Molex connector (without brake)	X63B or	
X63	4-pole Power-Combicon connector		8-pole Molex connector (with brake)	X63C	

Tab. 3: AKM-motors with Molex connector (connector type M)

11.3.1 X26C – Resolver (Connector Type M)

Connecting cable

- shielded round cable
- twisted-pair
- ► 15-pole male submin D connector ↔ 10-pole female Molex connector (art. No. 35512207)
- The cable shield is connected to the busbar.
- The maximum tigthening torque for bolts at submin D connectors is 0.7 Nm.

Pin assignment on the servo amplifier / motor

- ▶ 15-pole female submin D connector ↔ 10-pole Molex connector
- ► view looking into female connector ↔ male connector

MD84				AKM-motor			
15-pole female submin D con.	Pin	1/0	Designation	Description	Designation	Pin	10-pole Molex con.
	1	0	0 V	GND	0 V		5 99 10
	2	I	S1	Sine	S1	8	
	3	0	0 V		0 V		1 0 6
	4	I	S4	Cosine	S4	3	
00	5	0	0 V		0 V		
	6	0	R3	Rotor	R2	5	
	7	I	Thermal contact		Thermal contact	2	
	8	0	0 V		0 V		

11

MD84					AKM-motor		
15-pole female submin D con.	Pin	I/O	Designation	Description	Designation	Pin	10-pole Molex con.
	9	I	S3	Sine	S3	4	
	10	0					
	11	I	S2	Cosine	S2	7	
	12	0					
	13	0	R1	Rotor	R1	9	
	14	0	0 V		0 V		
	15	0	+24 V	+24 V for thermal contact	+24 V	6	

To ensure proper functioning of the device, consider the following information.

Rotary motors (thermal contact)

If no thermal contact is connected at rotary motors, you must connect pin 1 and pin 2 of connector X64 at the servo amplifier by a wire strap!

Rotary motors: resolvers and limit switches

If no linear measuring systems are required, machines driven by rotary AC motors can use the resolver integrated in the motor as measuring system.

The resolver provides 4,096 pulses per motor revolution. This value is entered in the parameter editor and merged with the entered spindle pitch.

If machines are driven by rotary AC motors and equipped with linear measuring systems connect the resolvers to the connectors 26A and the measuring systems via X27. The signals of the measuring system **must** have TTL level!

11.3.2 X40B – Commutation Measuring System (Connector Type M)

Connecting cable

- shielded round cable
- twisted-pair
- 9-pole male submin D connector ↔ 18-pole female Molex connector (art. No. 35512209)
- The cable shield is connected to the busbar.
- The maximum tigthening torque for bolts at submin D connectors is 0.7 Nm.

11

Pin assignment on the servo amplifier / motor

- ▶ 9-pole female submin D connector ↔ 18-pole Molex connector
- ▶ view looking into female connector ↔ male connector

MD84					AKM-motor			
9-pole fem. submin D con.	Pin	1/0	Designation	Description	Designa- tion	Pin	Wire color	18-pole Molex con.
	1	I	Ua1	Pulses 0°	0	3	Blue	9 💽 18
	2	I	Ua1 inv.	Pulses 0° inv.	A inv.	4	Blue/black	
	3	I	Ua0	Zero pulse	Z	5	Lilac	٥O,
00	4	I	Ua0 inv.	Zero pulse inv.	Z inv.	6	Lilac/black	
5	5	I/O	GND	Ground	GND	7	Black	oo
	6	I	Ua2	Pulses 90°	В	1	Green	1 0 10
	7	I	Ua2 in.	Inverted pulses 90°	B inv.	2	Green/ black	
	8	0	+5 V	+5 V measuring system	vcc	10	Red	
	9	I	UaS	Dirt signal	n.c.			
	Shield	b				18	Black	

Pin assignment X64

- 2-pole mini Combicon connector at separate line at cable X40B (MD84)
- Notes for terminal connections (MD84):
 - MC (Phoenix)
 - max. cross-section (solid/stranded cables) = 1.5 mm²
 - max. tightening torque = 0.25 Nm
- 17-pole male encoder connector (motor)

MD84			AKM-motor			
2-pole Mini Combicon con.	Pin	Description	Pin	Wire color	18-pole Molex connector	
	1	+24 V for thermal contact	8	Orange	9 💽 18	
	2	Thermal contact of motor	9	Orange/ white	1 1 1 1 1 1 1 1 1 1 1 1 1 1	

11.3.3 X63B – Motor Connection MD84 (Connector Type M without Motor Brake)

🚹 DANGER

High voltages at the motor connectors

High voltages occur at the motor connectors during the operation of a servo amplifier/frequency converter.

Never operate servo amplifiers/frequency converters without connected plugs. Otherwise, you may seriously be injured when touching the contacts at the motor connectors unintentionally.

Risk of damage to the motor

Notes for AKM-motors with standstill currents of I₀ > 6 A_{rms}

Motors with a standstill current of $I_0 > 6 A_{rms}$ shall **not** be operated with connected Molex connectors.

Cut the Molex connector (5-pole without brake or 8-pole with brake) from the motor and connect the motor with the cable to the servo amplifier. The signal connectors for the resolver signals (10-pole) or the encoder signals (18-pole) can be connected.

Connecting cable

- ◆ 4-pole male Power Combicon D connector ↔ 5-pole female Molex connector (art. No. 35512206)
- The cable shield is connected to the busbar.

Pin assignment on the servo amplifier / motor

- The cable shield is connected to the connector shell and to the busbar.
- ► 5-pole Molex connector
- 4-pole Power Combicon connector (MD84) Consider the notes for terminal connections, <u>section 12.A "Notes for Terminal</u> <u>Connections", page 85</u>.

MD84			AKM-motor			
4-pole Power Combicon con.	Connector	Designation	Pin	Wire color	5-pole motor con.	
	Busbar at the chassis	Shield	5	Black	5	
	U	Motor phase U	1	Blue	1	
	V	Motor phase V	2	Brown		
	w	Motor phase W	3	Lilac		
	÷	Ground the motor housing in the machine	4	Green		

11.3.4 X63C – Motor Connection MD84 (Connector Type M with Motor Brake)

A DANGER

Ŷ	
	_

High voltages at the motor connectors

High voltages occur at the motor connectors during the operation of a servo amplifier/frequency converter.

Never operate servo amplifiers/frequency converters without connected plugs. Otherwise, you may seriously be injured when touching the contacts at the motor connectors unintentionally.

NOTICE
Risk of damage to the motor
Notes for AKM-motors with standstill currents of $I_0 > 6 A_{rms}$
Motors with a standstill current of $I_0 > 6 A_{rms}$ shall not be operated with connected Molex connectors.
Cut the Molex connector (5-pole without brake or 8-pole with brake) from the motor and connect the motor with the cable to the servo amplifier. The signal connectors for the resolver signals (10-pole) or the encoder signals (18-pole) can be connected.

Connecting cable

- ◆ 4-pole male Power Combicon D connector ↔ 8-pole female Molex connector (art. No. 35512208)
- The cable shield is connected to the busbar.

Pin assignment on the servo amplifier / motor

- The cable shield is connected to the connector shell and to the busbar.
- ► 8-pole Molex connector
- 4-pole Power Combicon connector (MD84) Consider the notes for terminal connections, <u>section 12.A "Notes for Terminal</u> <u>Connections", page 85</u>.

MD84			AKM-motor		
4-pole Power Combicon con.	Connector	Designation	Pin	8-pole motor connector	
	Busbar at the chassis	Shield	5	4 •• 8	
	U	Motor phase U	1	1 00 5	
	V	Motor phase V	2		
	W	Motor phase W	3		
	Ŧ	Ground the motor housing in the machine	4		
	Brake+	X30 pin 5 (connect via relay)	6		
	Brake-	GND	7		

Fig. 13: Connection diagram for AKM-motors with resolver (connector type M)

Fig. 14: Connection diagram for AKM-motors with incremental encoder (connector type M)

11.4 Connector Type B and C

Connector on the MD84		Function	Connector on the	Cables	SIEB & MEYER order number for connector set	
			Sivily motor		35512205	35512210
X26A	15-male submin D connector	Resolver connection	12-pole resolver connector	X26D	х	
X40	9-male submin D connector	Commutation meas- uring system	17-pole encoder	X40C		Y
X64	2-pole Power-Combicon connector	Thermal contact connector		7400		*
X63	4-pole Power-Combicon connector	Machine connection of MD84	8-pole motor connector	X63D	х	x

Tab. 4: AKMscrew connector IP65 (connector type E)

Notes:

- 1. AKM1 are only available with 0.5 m long cables.
- 2. Connector type B:
 - The connector type B is only available the motors AKM2.
 - For motors with connector type B the angular conector is fixed to the motor.
- 3. Connector type C:

- Connector type C at the motor AKM2 means that the motor connector is fixed to a 0.5 m long cable.
- For motor type AKM3 and higher connector type B means that the angular connector is fixed to the motor.

11.4.1 X26D – Resolver (Connector Type B+C)

Connecting cable for resolvers

- shielded round cable
- twisted-pair
- ▶ 15-pole male submin D connector ↔ 12-pole female resolver connector
- The cable shield is connected to the busbar.
- The maximum tigthening torque for bolts at submin D connectors is 0.7 Nm.

Pin assignment on the servo amplifier / motor

E

Consider that the pin assignment of the 12-pole resolver connector for connector type B and C is mirror-inverted compared to connector type E!

- ► 15-pole female submin D connector ↔ 12-pole female resolver connector (connector type B+C)
- view looking into female connector and round connector

MD84				AKM-motor			
15-pole female submin D con.	Pin	I/O	Designation	Description	Designation	Pin	12-pole male resolver con.
	1	I/O	0 V	GND	0 V		
	2	I	S1	Sine	S1	8	00000
	3	0	0 V		0 V		0 0 0 0 0
00	4	I	S4	Cosine	S4	3	
00	5	0	0 V		0 V		•
	6	0	R2	Rotor	R2	5	•
	7	I	Thermal contact		Thermal contact	2	•
	8	0	0 V		0 V		•
	9	I	S3	Sine	S3	4	•
	10	0					•
	11	I	S2	Cosine	S2	7	•
	12	0					•
	13	0	R1	Rotor	R1	9	
	14	0	0 V		0 V		

	MD	84			AKM-motor		
15-pole female submin D con.	Pin	I/O	Designation	Description	Designation	Pin	12-pole male resolver con.
	15	0	+24 V	Voltage supply	+24 V	6	

To ensure proper functioning of the device, consider the following information.

Rotary motors (thermal contact)

If no thermal contact is connected at rotary motors, you must connect pin 1 and pin 2 of connector X64 at the servo amplifier by a wire strap!

Rotary motors: resolvers and limit switches

If no linear measuring systems are required, machines driven by rotary AC motors can use the resolver integrated in the motor as measuring system.

The resolver provides 4,096 pulses per motor revolution. This value is entered in the parameter editor and merged with the entered spindle pitch.

If machines are driven by rotary AC motors and equipped with linear measuring systems connect the resolvers to the connectors 26A and the measuring systems via X27. The signals of the measuring system **must** have TTL level!

11.4.2 X40C - Commutation Measuring System (Connector Type B+C)

Connecting cable

- ▶ twisted-pair
- ▶ 9-pole male submin D connector ↔17-pole female encoder connector
- The cable shield is connected to the busbar.
- The maximum tigthening torque for bolts at submin D connectors is 0.7 Nm.

Pin assignment on the servo amplifier / motor

- ▶ 9-pole female submin D connector ↔ 17-pole encoder connector
- view looking into female connector / round connector

MD84				AKM-motor			
9-pole fem. submin D con.	Pin	I/O	Designation	Description	Designation	Pin	17-pole encoder con.
	1	Ι	Ua1	Pulses 0°	А	3	
	2	I	Ua1 inv.	Pulses 0° inv.	A inv.	4	U U U
	3	I	Ua0	Zero pulse	Z	5	O O O O
	4	I	Ua0 inv.	Zero pulse inv.	Z inv.	6	065
5	5	I/O	GND	Ground	GND	7	
	6	I	Ua2	Pulses 90°	В	1	
	7	I	Ua2 in.	Inverted pulses 90°	B inv.	2	
	8	0	+5 V	+5 V measuring system	VCC	10	
	9	Ι	UaS	Dirt signal		n.c.	

Pin assignment X64

- 2-pole mini Combicon connector at separate line at cable X40C (MD84)
- Notes for terminal connections (MD84):
 - MC (Phoenix)
 - max. cross-section (solid/stranded cables) = 1.5 mm²
 - max. tightening torque = 0.25 Nm
- 17-pole male encoder connector (motor)

MD84 2-pole male Mini Combicon con.			AKM-motor		
		Description	Pin	17-pole encoder con.	
	1	+24 V for thermal contact	8		
	2	Thermal contact of motor	9		

11.4.3 X63D – Motor Connection of MD84 (Connector Type B+C)

	A DANGER
٨	High voltages at the motor connectors
<u>/</u>	High voltages occur at the motor connectors during the operation of a servo ampli- fier/frequency converter.
	Never operate servo amplifiers/frequency converters without connected plugs. Otherwise, you may seriously be injured when touching the contacts at the motor connectors unintentionally.

Connecting cable

- shielded round cable
- ► 4-pole Power Combicon connector ↔ 8-pole female motor connector
- The cable shield is connected to the busbar.

Pin assignment on the servo amplifier / motor

- The cable shield is connected to the connector shell and to the busbar.
- 6-pole motor connector
- 4-pole Power Combicon connector (MD84) Consider the notes for terminal connections, <u>section 12.A "Notes for Terminal</u> <u>Connections", page 85</u>.

MD84			AKM-motor	
4-pole Power Combicon con.	Connector	Designation	Pin	8-pole motor connector
	Busbar at the chassis	Shield	Housing	0
	U	Motor phase U	1	
	V	Motor phase V	4	
	W	Motor phase W	3	
	÷	Ground the motor housing in the machine	Ŧ	
	Brake+	X30 pin 5 (connect via relay)	AO	
	Brake-	GND	В	
	n.c.		С	
	n.c.		D	

SM order number for connector set (resolver /motor connector): 355 12 205

SM order number for connector set (encoder/motor connector): 355 12 210

Fig. 16: Connection diagram for AKM-motors with incremental encoder (connector type B+C)

12 Appendix

12.A Notes for Terminal Connections

12.A.1 Terminal Connections of MD84 (First Generation)

The following table shows the connector types used on the MD84 of the first generation with the corresponding conductor cross-sections and tigthening torques for screw connections.

MD84	Width	Connector (Phoenix)	Min. conductor cross-section ⁽¹⁾	Max. conductor cross section ⁽²⁾	Max. tigthening torque ⁽³⁾
0268421/31DC 0268421/31GC	12 WU	PC4	1.5 mm²	4 mm² (solid/stranded cables)	0.6 Nm
0268421/31ZC	12 WU	PC4	2.5 mm²	4 mm² (solid/stranded cables)	0.6 Nm
0268421/31KC 0268421/31LC	12 WU	PC4	4 mm²	4 mm² (solid/stranded cables)	0.6 Nm
0268422/32IC 0268422/32QC 0268422/32UC 0268422/32WC	16 WU	PC6	6 mm²	10 mm² (solid cables) 6 mm² (stranded cables)	1.5 Nm
02684120/130DDC 02684120/130EEC 02684200/220/250/270EEC	16 WU	PC4	1.5 mm²	4 mm² (solid/stranded cables)	0.6 Nm

⁽¹⁾The values for the min. conductor cross-section are indicated acc. to the rated current of the SIEB & MEYER device.

⁽²⁾ The values for the max. conductor cross-section are indicated acc. to the specification of the manufacturer of the connector (Phoenix Contact).

⁽³⁾ The values for the max. tightening torque of the screws on the terminals with screw connections are indicated acc. to the specification of the manufacturer of the connector (Phoenix Contact).

12.A.2 Terminal Connections of MD84 (Second Generation)

The following table shows the connector types used on the MD84 of the second generation with the corresponding conductor cross-sections and tigthening torques for screw connections.

MD84	Width	Connector (Phoenix)	Min. conductor cross- section ⁽¹⁾	Max. conductor cross section ⁽²⁾	Max. tigthening torque ⁽³⁾
0268451GC	12 WU	PC4	1.5 mm²	4 mm² (solid/stranded cables)	0.6 Nm
0268451LC	12 WU	PC4	4 mm²	4 mm² (solid/stranded cables)	0.6 Nm
0268452IC 0268452UC	16 WU	PC6	6 mm²	10 mm² (solid cables)	1.5 Nm

MD84	Width	Connector (Phoenix)	Min. conductor cross- section ⁽¹⁾	Max. conductor cross section ⁽²⁾	Max. tigthening torque ⁽³⁾
0268452WC				6 mm² (stranded cables)	
02684150EEC 02684150DDC 02684350EEC 02684360EEC	16 WU	PC4	1 mm²	4 mm² (solid/stranded cables)	0.6 Nm

 $^{(1)}\mbox{The}$ values for the min. conductor cross-section are indicated acc. to the rated current of the SIEB & MEYER device.

⁽²⁾ The values for the max. conductor cross-section are indicated acc. to the specification of the manufacturer of the connector (Phoenix Contact).

⁽³⁾ The values for the max. tightening torque of the screws on the terminals with screw connections are indicated acc. to the specification of the manufacturer of the connector (Phoenix Contact).

12.A.3 Terminal Connections of MD84 (Third Generation)

The following table shows the connector types used on the MD84 Nano of the third generation with the corresponding conductor cross-sections and tigthening torques for screw connections.

MD84 Nano	Width	Connector (Phoenix)	Min. conductor cross-section ⁽¹⁾	Max. conductor cross section ⁽²⁾	Max. tigthening torque ⁽³⁾
0268461/71GC	12 WU	PC6	1.5 mm²	10 mm² (solid cables) 6 mm² (stranded cables)	1.5 Nm
0268462/72IC 0268462/72WC	16 WU	PC6	6 mm²	10 mm² (solid cables) 6 mm² (stranded cables)	1.5 Nm
02684160/170YYC	16 WU	SPC5	1 mm²	6 mm² (solid/stranded cables)	-
02684170ZZC	16 WU	SPC5	1.5 mm²	6 mm² (solid/stranded cables)	-
02684172IIC	16 WU	SPC5	6 mm²	6 mm² (solid/stranded cables)	-
02684180DDC 02684180DDDC	16 WU	SPC5	1 mm²	6 mm² (solid/stranded cables)	-
02684402IC	22 WU	SPC5	6 mm²	6 mm² (solid/stranded cables)	-
02684402ZC	16 WU	SPC5	1.5 mm²	6 mm² (solid/stranded cables)	-
02684403DC	16 WU	SPC5	1 mm²	6 mm² (solid/stranded cables)	-
02684404ZC	22 WU	SPC5	1 mm²	6 mm² (solid/stranded cables)	-

MD84 Nano	Width	Connector (Phoenix)	Min. conductor cross-section ⁽¹⁾	Max. conductor cross section ⁽²⁾	Max. tigthening torque ⁽³⁾
02684406DC	22 WU	SPC5	1.5 mm²	6 mm² (solid/stranded cables)	-

 $^{(1)}\,\text{The}$ values for the min. conductor cross-section are indicated acc. to the rated current of the SIEB & MEYER device.

⁽²⁾ The values for the max. conductor cross-section are indicated acc. to the specification of the manufacturer of the connector (Phoenix Contact).

⁽³⁾ The values for the max. tightening torque of the screws on the terminals with screw connections are indicated acc. to the specification of the manufacturer of the connector (Phoenix Contact).

12.A

12.B Ferrite Cores at X63

The following table lists all device variants of the with information on ferrite cores and the connector type.

Meaning of the words in the table:

- Internal = Ferrite cores are equipped on the output stage of the device. Guiding the line at X63 trough a ferrite core is not necessary.
- External = No ferrite cores are equipped on the output stage of the device. Therefore, the line at X63 must be guided as shown in the figure twice through one ferrite core (1-axis modules), two ferrite cores (2-axis modules) and three ferrite cores (3-, 4- and 6-axis modules).

12.B.1 Ferrite Cores at X63 (MD84 of the First Generation)

	Variant	Ferrit	e core
MD04	vanant	Connection	Туре
	DC	Internal	1 x R28
0268421	GC	Internal	1 x R28
	ZC	Internal	1 x R28
0268421	KC	External	1 x R63
0208421	LC	External	1 x R63
	IC	External	1 x R63
0268422	QC	External	1 x R63
0208422	UC	External	1 x R63
	WC	External	1 x R63
	DC	Internal	1 x R28
0268431	GC	Internal	1 x R28
	ZC	Internal	1 x R28
	IC	External	1 x R63
0268432	QC	External	1 x R63
0200432	UC	External	1 x R63
	WC	External	1 x R63
02684120	DDC	Internal	2 x R28
02004120	EEC	Internal	2 x R28
02684130	DDC	Internal	2 x R28
02004130	EEC	Internal	2 x R28
02684200	EEC	Internal	2 x R28
02684220	EEC	Internal	2 x R28
02684250	EEC	Internal	2 x R28
02684270	EEC	Internal	2 x R28

12.B.2 Ferrite Cores at X63 (MD84 of the Second Generation)

MD84	Verient	Ferrite core		
	vanant	Connection	Туре	
0268451	GC	Internal	1 x R28	
0200431	LC	External	1 x R63	
	IC	External	1 x R63	
0268452	UC	External	1 x R63	
	WC	External	1 x R63	
02684150	DDC	Internal	2 x R28	
	EEC	Internal	2 x R28	
02684350	EEC	Internal	2 x R28	
02684360	EEC	Internal	2 x R28	

12.B.3 Ferrite Cores at X63 (MD84 Nano)

	Variant	Ferrite core		
MD04 Nano	vanan	Connection	Туре	
0268461	GC	External	1 x R63	
0268462	IC	External	1 x R63	
0268462	WC	External	1 x R63	
0268471	GC	External	1 x R63	
0268472	IC	External	1 x R63	
0268472	WC	External	1 x R63	
02684160	YYC	Internal	2 x R28	
02684170	YYC	Internal	2 x R28	
02684170	ZZC	Internal	2 x R28	
02684172	IIC	External	2 x R63	
02684180	DDC	Internal	2 x R28	
02684180	DDDC	Internal	3 x R28	
02684402	IC	External	2 x R63	
02684402	ZC	Internal	2 x R28	
02684403	DC	Internal	3 x R28	
02684404	ZC	Internal	4 x R28	
02684406	DC	Internal	6 x R28	

12.B

13

Glossary

Peak current (pulse current) I_{0max} [A]

The peak current (effective sinusoidal value) is approximately equivalent to 4 times the standstill current. The peak current of the connected servo amplifier must be smaller.

Rated torque M_n [Nm]

rated torque is produced when the motor is drawing the rated current at the rated speed. The rated torque can be produced indefinitely in continuous operation (S1) at the rated speed.

Release delay time t_{BRH} [ms] / application delay time t_{BRH} [ms] of a motor brake

These constants define the reaction times of the holding brake during operation with rated voltage ate the servo amplifier.

Rotor moment of inertia J [kgcm²]

The constant J is a measure for the acceleration capability of the motor. For instance, at I_0 the acceleration time t_b from 0 to 3,000 rpm is (with M_0 in Nm and J in kgcm2):

 $t_{b(s)} = \frac{3000 \times 2\pi}{M0 \times 60s} \times \frac{m^2}{10^4 \times cm^2} \times J$

Standstill current I_{0rms} [A]

The standstill current is the effective sinusoidal current drawn by the motor at a speed of n<100 rpm in order to produce the stillstand torque.

Standstill torque M₀ [Nm]

The standstill torque can be maintained indefinitely at a speed of n<100 min⁻¹ and rated ambient temperatures.

Thermal time constant t_{th} [min]

The constant t_{th} defines the time for the cold motor, under a load of I_0 to heat up to an overtemperature of $_0.63 \times 100$ K. When loaded with peak current, the motor is heated up in a much shorter time

Torque constant K_{Trms} [Nm/A]

The torque constant defines the torque in Nm generated by the motor per 1 A sine RMS current. The following applies: $M = I \times K_T$ (to max. $I = 2 \times I_0$)

Voltage constant K_{Erms} [mVmin]

The voltage constant determines the induced motor EMF as effective sinusoidal current between two terminals, per 1,000 rpm.

14

Index

Symbols

Ambient temperature (max.) <u>17</u>	
-AKMmotors	
X40A - commutation measurin	g
system <u>68</u>	

Α

AKM-motors connection diagrams (connector type B+C) 83 connection diagrams (connector type E) 70 connection diagrams (connector type M) 77 X26A - Resolver 66 X26C - resolver 71 X26D - resolver 79 X40B - commutation measuring system 72 X40C - commutation measuring system 80 X63A - motor connection with brake 69 X63B - motor connection without motor brake 74 X63C - motor connection without motor brake 75 X63D - motor connection 81 Application fields of AKM-motors <u>17</u> Appropriate use 11 Axial forces 18

Е

EMV Guideline 9 Encoder 21

F

Feather key $\underline{21}$ Feedback system $\underline{17}$, $\underline{19}$ Flange dimensions $\underline{18}$

Н

Holding brake $\underline{17}$, $\underline{19}$, $\underline{20}$ humidity $\underline{12}$ Humidity $\underline{12}$, $\underline{17}$

I

Improper use Initial operation Insulation class IP code 19

L

Low-Voltage Directive 9

Μ

Machine Guideline 9 Maintenance 12 Max. stacking height of AKM-motors in cardboard boxes 12 Motor designations 24 Motor noise 13 Mounting 27

Ν

Number of poles 20

0

Operating hours $\underline{12}$, $\underline{17}$, $\underline{18}$ Optional equipment $\underline{20}$

С

D

Cleaning 12

climate category 12, 12

Construction types of the motors 18

Climate category <u>17</u> Connection <u>19</u>, <u>29</u>

Default equipment 18

Device code <u>23</u> Device protection <u>19</u>

Dimensions 25

Overload of the motor 19

Ρ

Packaging <u>12</u> Power derating <u>17</u> Power transmission <u>18</u> Push-in technology <u>66</u>

R

Radial shaft sealing ring 20

S

Screw terminals <u>65</u> Selection criteria <u>21</u> Service life of the bearings <u>17</u>, <u>18</u> Solvent resistance <u>17</u> Standard including regulations for rotating machines <u>9</u> Storage <u>12</u> storage temperature <u>12</u>

Т

Technical data <u>17</u>, <u>33</u> AKM1 <u>33</u> AKM2 <u>36</u> AKM3 <u>41</u> AKM4 <u>44</u> AKM5 <u>50</u> AKM6 <u>54</u> AKM7 <u>59</u> Thermal switch <u>19</u> Transport <u>12</u> Type plate <u>23</u>

V

Varnish <u>17</u> Vibration class <u>19</u>

W

Winding temperature 17

X64 - thermal contact of motor 68, 72, 80

Х